Android Linux Windows

Простой цифровой генератор сигналов произвольной формы. Генератор сигналов произвольной формы Длина внутренней памяти и вертикальное разрешение АЦП

Генераторы сигналов произвольной формы - цифровые генераторы, основанные на применении памяти, со способностью передачи через цифро-аналоговый преобразователь любой формы сигнала, включая нарисованную от руки или восстановленную путем захвата реального сигнала с помощью цифрового осциллографа. При его возможностях и способностях генератор сигналов произвольной формы позволяет пользователю увеличивать или уменьшать амплитуду и частоту, повторять сигналы так частот как это необходимо или изменять сигналы различными способами. Основной чертой генератора сигналов произвольной формы является переменная частота дискретизации, что позволяет генерировать превосходно повторяемые выходные сигналы сложной формы (рис.1.3).

Рисунок 1.3 Схема генератора сигналов произвольной формы

Частота сигнала будет определяться по используемой частоте дискретизации и количества точек в таблице памяти по следующей формуле:

формула 1

Либо частота дискретизации, либо длина таблицы памяти, либо они вместе могут быть настроены для получения желаемой частоты выходного сигнала. Поэтому с генератора сигналов произвольной формы, любой сигнал повторяется точно, без наложений. Будучи основанным на использовании памяти, генератор сигналов произвольной формы дает возможность пользователю программировать свою память путем деления ее на сегменты данных и использовать каждый сегмент индивидуально.

Кроме того, генераторы сигналов произвольной формы обычно оснащены последовательным режимом, который позволяет связывать или повторять сегменты любым образом по выбору пользователя. Несколько расширенных режимов обеспечивают различные пути по формированию выходного сигнала: непрерывный, пошаговый, однократный, смешанный и т.д.

Рисунок 1.4 Воспроизведение сигнала с использованием сегментов: синус, меандр, треугольник, экспонента, шум, повторение сегмента меандра

Генераторы сигналов произвольной формы могут быть синхронизированы для обеспечения многоканальных решений (рис. 1.5). Однако, использование различных частот дискретизации в генераторах сигналов произвольной формы затрудняет реализацию стандартных видов модуляции и быстрой перестройки частоты выходного сигнала.

Рисунок 1.5 Мультигенераторная синхронизация

Описание аналогов

Для преобразования цифрового сигнала в аналоговый используют устройства под названием цифро-аналоговые преобразователи. Как правило, они существуют в виде отдельных микросхем, которые порой труднодоступны. Если к цифро-аналоговому преобразователю не предъявляются серьёзные требования, то его можно сделать самостоятельно из обычных резисторов. Называется такой ЦАП - R -2R. Своё название он получил из-за номиналов, применяемых в нём резисторов с сопротивлениями R и 2*R. Сопротивления могут быть любыми, но в разумных пределах. Если поставить очень большие, например, по несколько мегаом, то нагрузка, которая подключена к выходу, внесет существенные искажения в сигнал. Напряжение начнёт проседать. В данном аналоге взяты резисторы с сопротивлениями 1 КОм и 2 КОм.

Рисунок 1.5

На отладочной плате ЦАП выглядит так:


Рисунок 1.6 Матрица R-2R на печатной плате

Описание работы:

Каждый вход цифро-аналогового преобразователя имеет свой «вес». Входы расположены в порядке уменьшения веса слева направо. Таким образом, левый вход оказывает самое большое влияние на выходной сигнал, следующий за ним вдвое меньше и т.д. Самый последний вход изменяет выходной сигнал на маленькие милливольты. Если известна комбинация бит поступающая на вход цифро-аналогового преобразователя, то рассчитать напряжение очень легко. Предположим, что на входе у нас число 10010101 тогда выходное напряжение можно рассчитать по формуле:

Uвых = Uпит * (1 * 1/2 + 0 * 1/4 + 0 * 1 / 8 + 1 * 1 / 16 + 0 * 1 / 32 + 1 * 1

/ 64 + 0 * 1 / 128 + 1 * 1 / 256) Формула 2.

Согласно формуле 2 , напряжение на выходе будет равно 2.91 вольта. Uпит - напряжение питания микроконтроллера. При расчете использовалось значение 5 вольт. Таким образом, восьмибитный цифро-аналогового преобразователь способен выдать 256 различных напряжений с шагом около 20 милливольт, что вполне неплохо. Применение

Применений у данного цифро-аналогового преобразователя несколько. В особенности, генератор сигналов различной формы.

Формирование пилообразного сигнала:

Рисунок 1.7 Пилообразный сигнал

Формирование треугольного сигнала:

Рисунок 1.8 Треугольный сигнал

Формирование:

Рисунок 1.9 Произвольный сигнал

Преимущества и недостатки:

К преимуществам можно отнести:

Возможность увеличения разрядности;

Частота дискретизации;

Схемотехническая простота и повторяемость;

К недостаткам относятся:

Качество цифро-аналогового преобразователя сильно зависит от применяемых резисторов;

Сопротивление ключей порта микроконтроллера вносят искажения;

Большие габариты

А.A. Дедюхин, АО «ПриСТ»

Генераторы сигналов являются одним из основных средств, предназначенных для технического обслуживания, ремонта, проведения измерений и исследований в различных областях науки, промышленности и связи. За последние годы произошли серьёзные изменения в подходе к функциональности генераторов сигналов. Если десять лет назад генераторы можно было разделить на такие группы, как синтезаторы, генераторы шума, генераторы синусоидальных сигналов, импульсные генераторы, генераторы сложных сигналов, ВЧ генераторы, то в настоящий момент, в связи с бурным ростом цифровой и микропроцессорной техники, развитием программных технологий появилась возможность создания нового класса генераторов, объединяющего в себе все ранее существующие типы генераторов. Это многофункциональные генераторы сигналов с возможностью формирования сигналов сложной и произвольной форм …

Генераторы сигналов являются одним из основных средств, предназначенных для технического обслуживания, ремонта, проведения измерений и исследований в различных областях науки, промышленности и связи. За последние годы произошли серьёзные изменения в подходе к функциональности генераторов сигналов. Если десять лет назад генераторы можно было разделить на такие группы, как синтезаторы, генераторы шума, генераторы синусоидальных сигналов, импульсные генераторы, генераторы сложных сигналов, ВЧ генераторы, то в настоящий момент, в связи с бурным ростом цифровой и микропроцессорной техники, развитием программных технологий появилась возможность создания нового класса генераторов, объединяющего в себе все ранее существующие типы генераторов. Это многофункциональные генераторы сигналов с возможностью формирования сигналов сложной и произвольной форм. Эти генераторы позволяют формировать не только, так называемые «стандартные формы сигналов» (синусоидальную, прямоугольную для который ранее существовали отдельные типы генераторов), но к «стандартным формам сигнала», в последнее время, уже относятся и сигналы треугольной, пилообразной, импульсной форм, шумовой сигнал и сигналы экспоненциальной, логарифмической, sin(x)/x, кардиоформ, сигнал постоянного напряжения. Построенные на основе цифровых технологий современные многофункциональные генераторы, по сравнению со своими аналоговыми предками, обладают уникальной дискретностью изменения частоты - до 1 мкГц, прекрасной стабильностью и погрешностью установки частоты - до 1×10 -6 и малым уровнем гармонических составляющих для синусоидального сигнала. Требования к генераторам сигналов со стороны потребителей постоянно ужесточаются в направлении расширения частотного диапазона, увеличение числа генерируемых форм, включая возможности моделирования сигналов произвольных форм, расширение видов модуляций, включая цифровые виды модуляций и других вспомогательных возможностей.

Одним из таких современных генераторов сигналов и является генератор сигналов специальной формы АКИП-3402 (см. рис 1).

Рисунок 1. Внешний вид генератора АКИП-3402

Принцип работы генератора основан на технологии прямого синтеза (DDS). Этот принцип состоит в том, что цифровые данные, представляющие цифровой эквивалент сигнала требуемой формы, последовательно считываются из памяти сигнала и поступают на вход цифро-аналогового преобразователя (ЦАП). ЦАП тактируется с частотой дискретизации генератора 125 МГц и выдает последовательность ступеней напряжения, аппроксимирующих требуемую форму сигнала. Ступенчатое напряжение затем сглаживается фильтром нижних частот (ФНЧ), в результате чего восстанавливается окончательная форма сигнала (см. рис. 2). Применение частоты дискретизации 125 МГц позволяет генератору АКИП-3402 формировать синусоидальный сигнал с частотой до 50 МГц.

Генератор АКИП-3402 является расширением линейки генераторов ГСС-05….ГСС-120 и по совокупности параметров генератор сигналов специальной формы АКИП-3402 можно поставить в один рад с такими генераторами как 33210, 33220 и 33250 компании Agilent Technologies или AFG3011 и AFG3021B компании Tektronix (а по некоторым параметрам генератор АКИП-3402 сопоставим и с генератором AFG3101 компании Tektronix).

Длина внутренней памяти и вертикальное разрешение АЦП.

Одними из самых важных параметров генераторов сигналов специальной форм, помимо частоты дискретизации, определяющей максимальную выходную частоту, также являются длина внутренней памяти и вертикальное разрешение АЦП. Возвращаясь к принципу прямого синтеза, изложенного выше, и взяв в качестве примера формирование сигнала синусоидальной формы, можно утверждать, что вертикальное разрешение влияет на высоту ступеньки напряжения, а длина внутренней памяти на длину ступеньки напряжения. И чем более высокое разрешение имеет АЦП генератора и более длинную память, тем меньше будет размер этой ступеньки. И как следствие этого выходной сигнал будет иметь меньший уровень гармонических составляющих для синусоидального сигнала. При формировании сигналов сложной и произвольной форм более высокое разрешение АЦП и длинная внутренняя память позволяют формировать более сложный и «замысловатый» сигнал. Для наглядности на рисунке 3 приведены осциллограммы синусоидального сигнала с малым разрешением АЦП и длиной памяти (слева), а также с большим значением этих параметров (справа).

Генератор АКИП-3402 имеет длину памяти до 256.000 точек. Для примера, генератор Agilent Technologies 33250 имеет длину памяти 64.000 точек, а генераторы серии AFG компании Tektronix имеют длину памяти 128.000 точек.

Пользовательский интерфейс, управление генератором и отображение режимов.

Генератор АКИП-3402 имеет очень удобный и интуитивно понятный пользовательский интерфейс. Управление генератором осуществляется тремя основными группами органов управления. 1 группа – кнопки выбора основных форм сигнала и режимов работы. 2 группа – цифровое наборное поле для ввода параметров. 3 группа – вращающийся регулятор и две кнопки перемещения (влево/вправо).

  • 1 группа кнопок позволяет оперативно производить выбор основных форм сигнала, режимов модуляции и формирования пакетов, осуществлять вход в служебное меню. Так же эта группа кнопок, для уже заданных форм сигнала, позволяет производить выбор и изменение основных параметров, присущих выбранному сигналу. Например, переключение между частотой и периодом сигнала; для импульсного сигнала - выбор длительности импульса или скважности; для установки амплитуды сигнала выбор среднеквадратического значения (Vrms), пикового значения (Vp-p) или уровня в относительный единицах по мощности (dBm).
  • 2 группа кнопок предназначена для ввода числовых данных о значениях частоты (периода, длительности), амплитуды, постоянного смещения, параметров модуляции или свипирования. Единицы размерности после ввода данных вводятся группой кнопок 1. Такой способ ввода данных очень удобен для непосредственного задания значений параметров сигнала или их изменения на некратные значения. Например, при первоначальном значении частоты выходного сигнала 23,567 кГц и необходимости перехода к частоте 47,8309 кГц наиболее предпочтительно пользоваться прямым цифровым вводом.
  • 3 группа органов управления предназначена для плавного изменения заданных параметров в выбранном разряде. Например, если при первоначальном значении частоты выходного сигнала 23,567 кГц возникает необходимость плавной перестройки частоты с дискретностью 1 Гц, то это, бесспорно, более рационально производить вращающимся регулятором.

Очевидно, что при необходимости у пользователя иметь «под рукой» ряд собственных настроек и каждый раз производить перенастройку генератора - не очень удобно. Для решения этой задачи генератор АКИП-3402 имеет возможность запоминать во внутреннюю память до 4 профилей настроек органов управления. При этом есть возможность присвоить собственное имя каждому профилю, используя буквы латинского алфавита и цифры, например «PRIST 1». Кроме 4-х основных настроек, может быть сохранён ещё один, - 5-й профиль, который вызывает заводские установки генератора (по умолчанию).

Графический матричный дисплей генератора АКИП-3402 предназначен не только для отображения численных значений параметров выходного сигнала, но, так же, может быть переведён в режим «Графика». В графическом режиме на дисплее отображаются упрощённые пиктограммы выходных сигналов с установленными или предельными параметрами, в зависимости от типа выбранного сигнала. При формировании модулированного сигнала, на графическом дисплее отображается вся контекстная информация о сигнале, включая параметры модулирующего и модулируемого колебания.

Возможность корректной работы на нагрузки с разным номиналом.

По традиции, низкочастотные генераторы работают на нагрузку с сопротивлением 600 Ом, принятым как стандарт для акустических измерений. Высокочастотные генераторы работают на нагрузку 50 Ом. Для телевизионной техники в качестве согласованной нагрузки принято сопротивление 75 Ом. Помимо этого, в телекоммуникации широко используются тракты с сопротивлением 25 Ом и 135 Ом. Поскольку большинство современных, но простых генераторов сигналов специальной формы рассчитаны для работы только на нагрузку 50 Ом. Некоторые генераторы, например ГСС-05… ГСС-120 рассчитаны для работы как на нагрузку 50 Ом, так и для работы на высокоомную нагрузку 1 МОм. Очевидно, что теоретически генераторы имеют возможность работы практически на любую нагрузку (естественно при этом не должна превышается допустимая выходная мощность) но корректное соотношение между отображаемым уровнем на индикаторе генератора и истинным значением напряжения на нагрузке, отличной от 50 Ом, не будет обеспечено. Пояснения этого «явления» приведены ниже. На рисунке 4 приведена схема полной цепи генератора сигналов, имеющего подключённую внешнюю нагрузку 50 Ом.

Это согласованный режим и для него, как видно, индицируемое напряжение на дисплее генератора в 2 раза меньше, чем напряжение на внешней нагрузке. Это значение напряжения автоматически рассчитывается при индикации выходного уровня генератора.

Формула напряжения на внешней нагрузке с учётом сопротивления этой нагрузки имеет вид:

Так на рисунке 5 приведён пример подключения генератора к высокоомной нагрузке 1 МОм (например, вход универсального вольтметр или 1 МОм вход осциллографа).

Очевидно, что в этом случае, если не произвести перерасчёт амплитуды выходного сигнала уровень сигнала, отображаемый на индикаторе генератора будет в 2 раза меньше, чем уровень сигнала, измеренный на нагрузке 1 МОм. При внешней нагрузке, находящейся в пределах от 50 Ом до 1 МОм, в зависимости от значения нагрузки показания индикатора уровня генератора буду отличаться от истинного значения на нагрузке от 0 до 100% в сторону увеличения. И наоборот – при нагрузке меньшей, чем 50 Ом, уровень на индикаторе генератора будет больше, чем на самом деле.

Для исключения этого недостатка в генераторе АКИП-3402 пользователь имеет возможность задать номинал внешней нагрузки в пределах от 1 Ом до 10 кОм или выбрать фиксированное значение нагрузки 1 МОм.

Однако не следует забывать, что всё вышеизложенное предназначено только для корректного пересчёта уровня выходного сигнала, но не для изменения реального волнового сопротивления генератора сигналов. Значение согласованной нагрузки всегда составляет 50 Ом, для которой и нормируются все выходные параметры генератора – погрешность установки опорного уровня, неравномерность АЧХ, время нарастания импульсного сигнала, выброс на вершине и другие параметры.

Формирование сигналов произвольной формы (СПФ).

Возможность генераторов сигналов произвольной формы воспроизводить сигналы сложной и произвольной форм дает пользователю очень широкие возможности. В генератор АКИП-3402 отсутствует ручной режим формирования сигналов произвольной формы (при помощи органов управления передней панели), поскольку это способ формирования выходного сигнала весьма трудоёмок и «мучителен» для пользователя в силу того, что длина внутренней памяти генератора достаточно большая и позволяет создавать длительные посылки. Формирование сигналов произвольной формы осуществляется только с помощью программного обеспечения Wavepatt, входящего в комплект поставки.

Программное обеспечение просто в использовании, имеет удобную конфигурацию меню, понятный пользовательский интерфейс и позволяет формировать сигналы различными способами:

  1. Создание стандартных форм и их модификаций. На рабочем столе ПО Wave patt есть набор таких форм сигнала как – синусоидальная, прямоугольная, треугольная, пилообразная, кардиограмма, экспоненциальная и шумовая. Пользователю необходимо выбрать одну из таких форм и задать длину сегмента (число точек), амплитуду, фазу, уровень смещения и число циклов для формирования этого сигнала. Полученный сегмент можно редактировать карандашом, изменяя его форму, применять к сегменту математические действия сложение вычитание, умножение и деление изменять его амплитуду или число точек составляющих этот сегмент. Можно также инвертировать, создавать зеркальные образы и применять фильтры. Далее к этому сегменту можно пристегнуть второй, третий и так далее сегменты, созданные таким же образом. В частности, используя математическую функцию сложения двух форм сигнала очень просто получить амплитудно-модулированный сигнал. Пример формирования формы сигнала в программе и результат воспроизведения на осциллографе приведены на рисунке 6.
  2. Загрузка форм из внешних файлов. столе ПО Wavepatt позволяет подгружать файлы данных созданных ранее в собственной оболочке, а так же файлы с расширением «csv». Файлы «csv» позволяют создавать собственные, «замысловатые» сигналы абсолютно любой формы. Файлы «csv» могут создаваться с помощью математических формул, описывающих различные процессы или в ручном режиме, исходя из требований пользователя. Файлы «csv» могут создаваться с помощью программы Excel, входящей в стандартный пакет Microsoft Office или с помощью программы MATLAB, имеющей более широкие возможности по моделированию произвольных форм сигналов. Загруженные файлы могут отдельно редактироваться средствами Wavepatt, описанными выше. Пример приведён на последовательности рисунков 7a, 7b, 7c.
  3. Интересным в этом случае для практических приложений является связка цифрового осциллографа и генератора сигналов произвольной формы. Цифровой осциллограф, отображая входной сигнал - аналоговый или цифровой, способен записать его в файл с расширением «csv», далее этот файл открывается в программе Wavepatt и данные передаются в генератор АКИП-3402. Генератор формирует в точности такой же сигнал, какой отображается на экране осциллографа. Это весьма полезно при необходимости, когда осциллограф захватывает в реальных условиях редкий или одиночный сигнал и есть необходимость многократного воспроизведения этого специфического сигнала. Так на рисунке 8 приведён пример захвата первых четырёх строк видео сигнала, верхняя осциллограмма красного цвета –это «оригинальный» сигнал, нижняя осциллограмма жёлтого цвета – это осциллограмма последующего «клонирования» этих строк с использованием возможностей ПО и генератора АКИП-3402.
  4. Помимо аналоговых сигналов программное обеспечение Wavepatt позволяет создавать и сигналы 16-ти разрядной цифровой шины (они выводятся на отдельный разъём расположенный на задней панели генератора). Логические сигналы привязаны к тактовому генератору, частота которого, в свою очередь, задается пользователем в оболочке программы. Пример изображения при конструировании цифровой шины в оболочке ПО Wavepatt приведён на рисунке 9.

Нюансы в формировании «простых» сигналов.

Импульсный сигнал и компенсация постоянной составляющей . Многие пользователи, при выборе генератора сигналов произвольной формы, не уделяют должного внимания тщательному изучению возможностей того или иного генератора, считая при формировании достаточно простых и «традиционных» сигналов все генераторы воспроизводят сигналы одинаково. Но это не так, ряд генераторов обладает особенностями при формировании сигналов, которые могут снизить производительность использования генератора, значительно усложнить процесс формирования сигнала или сделать тестирование невозможным по условиям измерений.

К таким сигналам можно отнести формирование стандартного импульсного сигнала. Все генераторы сигналов произвольной формы, по умолчанию, формируют симметричные по амплитуде сигналы относительно нулевого напряжения. Но если симметричная синусоида или прямоугольный сигнал - это нормально, то импульсный сигнал, в основном предназначенный для тестирования и отладки логических схем, имеющих или положительное или отрицательное значение логической единицы, желательно иметь одной полярности. По умолчанию, любой генератор сигналов произвольной формы будет формировать импульсный сигнал симметричной амплитуды, но сформировать сигнал положительной или отрицательной полярности не составляет труда, используя внутреннее смещение постоянным напряжением. Уровень напряжения смещения будет составлять

Пример формирования импульса симметричной амплитуды по умолчанию и последующая компенсация смещением приведены на рисунках 10 и 11.

Смещение исходного сигнала отсутствует, амплитуда исходного сигнала симметрична относительно нулевого уровня.

Импульсный сигнал смещён на половину амплитуды положительным смещением.

В этом случае требуется очередная коррекция постоянного смещения. Каждый раз при необходимости постоянного изменения амплитуды импульса, потребуется отслеживать уровень постоянного смещения этого импульса, всё это значительно снижает производительность генератора сигналов произвольной фирмы. Увы, но так работает большинство генераторов сигналов произвольной формы, присутствующих в настоящий момент на российском рынке и это касается не только импульсных сигналов, но и сигналов других форм.


Скважность импульсного сигнала. Под скважностью импульсного сигнала понимается выраженное в процентах (%) отношение длительности импульса к периоду его повторения. Иными словами при меньшей скважности импульса он имеет более короткую длительность и редкий период повторения. Существующие на сегодняшний день массовые генераторы сигналов произвольной формы, например ГСС-120, позволяют формировать импульсы со скважностью 0,1%. Генераторы сигналов произвольной формы серии AFG3000 компании Tektronix , позволяют формировать импульсы со скважностью 0,01%. Генератор сигналов АКИП-3402 позволяет формировать импульсы со скважностью 0,0000002%! Это означает, что при формировании импульса с самой минимальной длительность 20 нс, период повторения составляет 10 с! Короткие импульсные сигналы, с параметрами указанными выше, обладают сверх широким спектром частот, зависящим от длительности импульса, периода повторения и времени нарастания и могут быть использованы для широкополосных измерений различных радиоустройств.

Возможность регулировки времени нарастания импульсного сигнала. Не все радиотехнические устройства требуют применения импульсных сигналов с как можно более быстрым фронтом нарастания (или спада). Сигнал с очень малым временем нарастания обладает практически бесконечным спектром частот. При ограниченности полосы пропускания радиотехнического устройства, из-за наличия бесконечного спектра частот тестирующего импульса в трактах тестируемых устройств возникают искажения. Так, например, при тестировании импульсной характеристики осциллографов на экране осциллографа на вершине импульса наблюдается существенный выброс (до 10%), которого на самом деле во входном импульсе нет. Причина этих искажения – несогласованность частотного спектра тестового импульсного сигнала и полосы пропускания осциллографа. Устранить эти явления возможно «обрезая» спектр импульсного сигнала, увеличивая время его нарастания (крутизну фронта).

Генератор сигналов АКИП-3402 позволяет регулировать время нарастания и спада импульсного сигнала в пределах от 5 нс до 100 нс, так на рисунке 15 приведены примеры одного импульсного сигнала с тремя разными временами нарастания.

Формирование пакетов. Все современные генераторы сигналов сложной формы имеют возможность формировать пакеты сигналов (Burst). Пакет – это близкий аналог радиоимпульса, но его заполнение, в отличие от радиоимпульса, может быть не только синусоидальным сигналом, а любым сигналом, формируемым генератором – импульсным, пилообразным, треугольным и пр. Основными параметрами в этом режиме являются – максимальная частота заполнения, число циклов заполнения, период повторения пакета. У большинства генераторов сигналов сложной формы в этом режиме существуют серьёзные ограничения вышеуказанных параметров. Например, для генераторов ГСС-05…ГСС-120 минимальная длительность пакета составляет 25 мкс или это означает, что одиночный импульс не может иметь частоту выше 40 кГц, к тому же для генераторов ГСС-05…ГСС-120 заполнение пакета возможно только синусоидальным сигналом. Генератор АКИП-3402 не имеет такого функционального ограничения и позволяет формировать пакеты со всеми формами сигналов в качестве заполнения, кроме модулированных сигналов. Частота заполнения пакета ограничена 10 МГц, но этого вполне достаточно для большинства приложений. Так на рисунке 16 представлен пакет из двух периодов синусоидального сигнала, симметричных относительно нулевой линии.

Интересным для пользователя в режиме пакетов являются пакеты импульсных сигналов. Как известно, любой импульсный генератор, помимо формирования одиночных или периодических импульсных сигналов имеет возможность формирования парных импульсов – двух близко расположенных импульсов с регулируемым временем задержки между импульсами и регулируемым периодом повторения таких пар. Очевидно, что парный импульс – это пакет из 2-х импульсов, формирование которых не представляет никакой сложности для генератора сигналов произвольной формы. И более того, генератор сигналов произвольной формы АКИП-3402 может формировать посылки из трёх, четырёх, пяти и т.д. до 50000 импульсов, что недоступно для большинства импульсных генераторов. Это преимущество, безусловно, значительно расширяет области возможного применения генератора АКИП-3402. Пример формирования посылки их четырёх импульсов приведён на рисунке 17.

Целостность сигнала при изменении уровня. Выходные каскады генераторов сигналов специальной формы представляют собой комбинацию нескольких усилителей и аттенюаторов, позволяющих получить требуемых уровень на выходе генератора. Используя комбинации усилителей и аттенюаторов, пользователь имеет возможность регулировать выходной уровень в очень широких пределах. По умолчанию генератор автоматически выбирает наиболее оптимальную комбинацию усилителей и аттенюаторов, во избежание появления излишних шумов в выходном сигнале. При изменении выходного уровня комбинация задействованных усилителей и аттенюаторов тоже изменяются. Это приводит к кратковременному провалу в выходном сигнале в момент механического переключения аттенюаторов. Так на рисунке 18 приведён пример осциллограммы изменения выходного уровня генератора от 900 мВ до 1000 мВ. Провал уровня по времени составляет около 15 мс.

Для устранения этого явления генератор АКИП-3402 имеет возможность блокировки аттенюаторов. При включённой блокировке диапазона аттенюатора, как усилители, так и аттенюаторы блокируются в текущем состоянии и не переключаются при изменении уровня выходного сигнала. Изменение выходного уровня происходит только за счёт электронной регулировки усиления выходных усилителей. Это позволяет устранить кратковременное пропадание сигнала. Однако следует понимать, что такая блокировка аттенюатора ухудшает погрешность установки выходного уровня и постоянного смещения за счёт отказа от использования механических аттенюаторов. Так на рисунке 19 приведён пример аналогичного измерения уровня генератора от 900 мВ до 1000 мВ (как на рисунке 18), но с заблокированным аттенюатором. Как видно из рисунка 19 уровень сигнала изменяется плавно и без разрывов.

Синхронная работа нескольких генераторов.

ГенераторАКИП-3402 является одноканальным генератором сигналов. Поэтому при необходимости формирования двух, трёх или более синфазных сигналов необходимо использовать, соответственно два, три или более генератора. Поскольку все генераторы имеют свой собственный источник опорной частоты, пусть и обладающий высокой стабильностью, но, всё же, имеющий небольшое отклонение по частоте от других аналогичных генераторов. Это не позволяет получить от трёх одинаковых генераторов сигналы абсолютно одинаковой частоты, ситуация усугубляется тем, что фазы сигналов с трёх разных генераторов будут абсолютно разные и не будут поддаваться контролю. Для того, что бы получить синфазные сигналы с отдельных генераторов необходимо использовать один общий для всех источник опорной частоты. Для этого генератор АКИП-3402 имеет вход внешней опорной частоты. Одновременно, вход внешней опорной частоты позволяет уменьшить погрешность установки частоты выходного сигнала, за счёт применения внешнего, более стабильного источника, чем внутренний опорный генератор. Органами внутренней настройки и при помощи цифрового осциллографа или внешнего частотомера, имеющего режим измерения фазы между двумя сигналами, необходимо выставить требуемую фазу между сигналами независимых генераторов. Кроме входа внешней опорной частоты, генераторыАКИП-3402 имеют выход генератора собственной опорной частоты. Это решение позволяет отказаться от внешнего опорного генератора и использовать сигнал опорной частоты от одного из генераторов, формирующих многоканальный сигнал. Кроме того генераторы АКИП-3402 имеют выход синхронизации на передней панели. Следует особо подчеркнуть, что в отличии от других генераторов СПФ на этом выходе действительно формируется сигнал синхронный с событием, являющимся основным режимом работы в текущий момент, а не просто прямоугольный сигнал, совпадающий по частоте с сигналом на основном выходе. Вход внешней синхронизации является входом внешней модуляции и стробирующего окна в режиме формирования пакетов. Соединение синхровыхода одного из генератора (он является ведущим) и синхровходами других генераторов (они являются ведомыми) позволяет формировать многоканальные системы и обеспечивать синхронизацию событий, происходящие в независимых генераторах, с временной задержкой всего 20 нс.

Формирование двоичных сигналов.

Подавляющее большинство генераторов сигналов произвольной формы, выпускаемых сегодня в мире, включая таких лидеров, как Tektronix и Agilent Technologies формируют хоть и разнообразные, но только аналоговые сигналы произвольной формы. Но для исследований, разработки или настройки современных радиоустройств только аналоговых сигналов недостаточно. Любое современное радиоустройство в своем составе неизбежно имеет логические схемы, микропроцессоры, устройства памяти, параллельные и последовательные шины передачи данных, цифровые устройства отображения и многое другое. Для отладки таких объектов аналоговых сигналов недостаточно, нужны многоканальные логические шины с программируемыми сигнатурами. Компания Tabor, профессионально специализирующаяся на разработке и производстве генераторов сигналов, в старших моделях предлагает наличие 16 битного цифрового выхода, но эти генераторы, как любой профессиональный инструмент достаточно дорогостоящие.

ГенераторАКИП-3402 так же имеет цифровой 16 битный выход, расположенный на задней панели генератора. Длина памяти в этом режиме составляет 262144 бит на каждую шину. Программирование состояния логических выходов возможно только с помощью программного обеспечения Wave patt (по аналогии с собственными сигналами произвольной формы – см. рис. 9). В режиме программирования цифрового выхода пользователь имеет возможность:

  1. Задавать частоту тактового генератора в пределах до 5 МГц;
  2. Задавать фронт тактового импульса, при котором происходит изменение логического состояния – положительный или отрицательный;
  3. Задавать уровень логической единицы – низкое или высокое состояние;
  4. С помощью курсора (мыши) формировать комбинацию логического состояния на любой из 16 шин;
  5. Производить масштабирование изображения шины;
  6. Перемещаться в заданный бит;
  7. Сохранять и загружать внешние файлы логического состояния.

Коррекция метрологических параметров после поверки.

Генератор АКИП-3402 является современным радиотехническим устройством и разработан на самой современной элементной базе значительно повышающей надёжность и метрологические параметры генератора в целом. Единственными механическими элементами в конструкции генератора являются элементы управления аттенюаторами выходного уровня (к сожалению, на сегодняшний день параметры полностью электронных аттенюаторов значительно уступают по техническим характеристикам механическим аттенюаторам). Внутри генератора нет никаких построечных резисторов или конденсаторов, предназначенных для настройки уровней или частот как основных, так и вспомогательных трактов. Все элементы внутренней коррекции имеют электронный характер управления от центрального процессора. С течением времени, из-за неизбежного процесса старения аналоговой элементной базы, происходит флуктуация параметров генератора. В течение межповерочного интервала (1 год) эти флуктуации не должны приводить к выходу за установленные пределы нормируемых технических характеристик. Но по истечении 3..5 лет процесс старения элементной базы может вызвать некоторое ухудшение параметров генератора, например частоты задающего генератора, что приводит к увеличению погрешности установки частоты выходного сигнала. Изменение во времени параметров выходного усилителя приводит к увеличению погрешности установки опорного уровня. Коррекция метрологических параметров генератора АКИП-3402 производится программным способом при сличении выходных параметров с прецизионными средствами измерения - частотомером, вольтметром, измерителем мощности, анализатором спектра, измерителем модуляции и пр. В большинстве случаев эта процедура недоступна пользователю (закрыта паролем) и производится компетентными специалистами только в специализированном сервисном центре.

Способы подключения к компьютеру.

Генератор АКИП-3402 имеет все современные на сегодняшний день возможности подключения к компьютеру – Ethernet (LAN), USB и опционально GPIB (КОП). Причём подключение по USB осуществляется полноценным стыком T&M USB - Test and Mesurement USB.


У нас представлены товары лучших производителей

ПРИСТ предлагает оптимальные решения измерительных задач.

У нас вы можете не только купить осциллограф, источник питания, генератор сигналов, анализатор спектра, калибратор, мультиметр, токовые клещи, но и поверить средство измерения или откалибровать его. Мы имеем прямые контракты с крупнейшими мировыми производителями измерительного оборудования, благодаря этому можем подобрать то оборудование, которое решит Ваши задачи. Имея большой опыт, мы можем рекомендовать продукцию следующих торговых марок.


Зачем нужны генераторы сигналов произвольной формы

При тестировании различных систем их разработчики должны исследовать поведение системы при подаче на ее вход как стандартных сигналов, так и сигналов, имеющих различные отклонения от нормы. В реальных условиях работы на систему могут действовать помехи, искажающие форму сигнала, и разработчику необходимо знать, как поведет себя устройство при тех или иных искажениях. Для этого ему необходимо либо моделировать помеху при прохождении стандартного сигнала, либо подать на вход искаженный сигнал, полученный при помощи генератора сигналов произвольной формы (ГСПФ). Первый путь гораздо длительнее и дороже, поэтому чаще всего используется второй путь.

Генераторы сигналов произвольной формы используются также в случаях, когда для отладки и испытания устройств нужно подавать на их вход сигналы нестандартной формы, получение которых без использования таких генераторов крайне затруднено.

Концепция построения ГСПФ

В основе построения ГСПФ лежит синтез аналогового сигнала по его образу, записанному в ОЗУ генератора. Типовая структура ГСПФ представлена на рис. 1.

Рис. 1. Типовая структура генератора сигналов произвольной формы

Генератор фазового угла (ГФУ) генерирует периодическую линейно нарастающую последовательность адресов ячеек ОЗУ (фазу сигнала). Крутизна нарастания последовательности зависит от частоты, задаваемой блоком управления (БУ).

В соответствии с изменением адресов на входе ОЗУ, меняются и данные на его выходе. Последовательность выдаваемых данных образует цифровой образ генерируемого сигнала. Он преобразуется в аналоговую форму при помощи цифро-аналогового преобразователя, затем сигнал ослабляется в соответствии с заданной амплитудой, и в него вводится нужное постоянное смещение. После усиления получается выходной сигнал нужной формы, частоты, амплитуды, с требуемым постоянным смещением.

Технические характеристики генератора

  • Частота генерируемого сигнала 0,0001…22000 Гц

  • Амплитуда выходного сигнала 0…10 В

  • Постоянное смещение выходного сигнала -5…+5 В

  • Выходной ток до 100 мА

  • Количество отсчетов на период 8192

  • Температурная относительная нестабильность частоты менее 10 -5 1/

    ° С
  • Долговременная относительная нестабильность частоты менее 10 -5 1/1000 ч

  • Точность установки частоты 7* 10 -6 Гц

  • Напряжение питания 10…12 В

  • Потребляемая без нагрузки мощность 0,9 Вт

  • Габаритные размеры платы генератора 125x100x15 мм

Структура комплекса ГСПФ

Программно-аппаратный комплекс генерации сигналов произвольной формы состоит из собственно генератора, подключаемого к ЭВМ через последовательный порт RS-232C, и программы управления генератором, работающей под Windows 95/98, Windows NT 4.0.

Структура аппаратной части генератора

Аппаратная часть выполнена в соответствии со структурой, приведенной на рис. 1. Единственное отличие состоит в том, что блок управления разработанного генератора подключен через блок сопряжения к ЭВМ. Из ЭВМ при помощи программы управления задаются форма и другие параметры сигнала.

Блок управления генератором построен на базе микроконтроллера AT89C52. Он принимает от ЭВМ команды изменения параметров сигнала и выдает соответствующие команды другим блокам генератора. Кроме того, генератор имеет SPI-подобный интерфейс для подключения управляющего устройства, отличного от ЭВМ. Наличие такого интерфейса позволит использовать генератор в составе мобильного компактного комплекса для снятия частотных характеристик, разработка которого ведется в настоящий момент.

Блок управления принимает и устанавливает частоту, смещение и амплитуду сигнала. Данные о форме выходного напряжения также проходят через блок управления. Стандартные формы (пила, меандр, белый шум и синусоида) рассчитываются непосредственно микроконтроллером.

Усилитель сигнала построен на малошумящем операционном усилителе MAX427 и позволяет получить выходной ток до 100 мА. ЦАП постоянного смещения AD7943 – умножающий 12-разрядный ЦАП с последовательным вводом данных, позволяющий получить смещение сигнала в диапазоне от –5 В до +5 В с дискретностью 2,44 мВ. ЦАП амплитуды AD7943 – умножающий 12-разрядный ЦАП с последовательным вводом данных. Позволяет задавать амплитуду выходного сигнала в диапазоне от 0 до 10 В с дискретностью 2,44 мВ. ЦАП MX565A – быстродействующий 12-разрядный ЦАП с параллельным вводом данных. Время установления с точностью до половины младшего разряда не более 250 нс. ОЗУ UM6264 содержит цифровой образ формы. Форма хранится в виде 8192 12-разрядных отсчетов. Это позволяет получить выходной сигнал достаточно высокого качества. Генератор фазового угла построен на основе ПЛИС EPF8282 фирмы ALTERA. Структура, записываемая в ПЛИС, приведена на рис. 2.


Рис. 2. Структурная схема конфигурации ПЛИС

Схема может работать в трех режимах:

В режиме нормальной генерации (на входе Mode единица) регистр приращения фазы (РПФ) загружается из БУ значением, соответствующим частоте.

При нормальной генерации содержимое РПФ суммируется с младшими разрядами регистра фазы (РФ), и сумма записывается в РФ по приходу SI . Тринадцать старших разрядов РФ подаются на адресные входы блока ОЗУ. Таким образом, частота переполнения РФ соответствует частоте генерируемого сигнала.

При ждущем режиме (на входе Mode ноль) ГФУ ожидает прихода стробирующего сигнала на вход Strob . По приходу этого сигнала генерируется сигнал с начальной фазы, записанной в регистре начальной фазы (РНФ), и до конца периода. После окончания периода ГФУ снова переходит в состояние ожидания строба.

При загрузке данных в ОЗУ они сначала последовательно записываются в регистр данных (РД), а затем, при подаче сигнала

InRAMOE , выставляются на входы данных блока ОЗУ. Это сделано для экономии числа используемых выводов микроконтроллера и упрощения топологии печатной платы.

Как видно из структуры ПЛИС, реализация такого операционного автомата на микросхемах малой степени интеграции потребовала бы большого количества разнотипных элементов (более 30 корпусов), что привело бы к увеличению габаритов и уменьшению надежности системы. Поэтому удобно применять ПЛИС.

Опытный образец генератора

Опытный образец был собран на двусторонней печатной плате размером 175

x 110 мм. Потребление опытного образца без нагрузки составляет 0.9 Вт.

Внешний вид опытного образца генератора приведен на рис. 3.

Рис. 3. Вид опытного образца платы генератора

Программа управления генератором

В радиолюбительской практике иногда бывает необходимо иметь под рукой генератор сигналов заданной формы и частоты, для проверки и тестирования узлов радиоаппаратуры. С ростом доступности микроконтроллеров можно собрать цифровой генератор сигналов, в котором программным путем бы генерировался любой сигнал.

Цифровой генератор сигналов «Nyx» (Никта). Технические характеристики:
Частота дискретизации 131072 Гц.
Диапазон генерируемых частот 1 – 65536 Гц, с шагом перестройки 1 Гц.
32 битный аккумулятор что теоретически позволяет получить разрешение 0,000030518 Гц.
8 ми битный выход, размах напряжения от -15В до +15В.
Генератор построен на базе микроконтроллера atmel ATMEGA16, в качестве ЦАП была использована R-2R сеть, выход которой был пропущен через операционные усилители, что позволило регулировать амплитуду генерируемого сигнала и его смещение относительно земли.

Программное обеспечение было написано на Си, со вставкой на ассемблере. Генератор работает по принципу прямого цифрового синтеза. Подробно прочитать теоретический материал по проблемам цифрового синтеза сигналов можно по ссылкам в конце оригинальной страницы. Программа построена следующим образом. В ОЗУ МК выделяется массив на 256 элементов, в котором хранится значение генерируемого сигнала в количестве одного периода. Заполнение массива значения производится перед началом синтеза в зависимости от того, какой сигнал необходимо получить на выходе. Именно данный механизм позволяет описать генерируемый сигнал формулой, а не вручную забивать таблицей, как это сделано в других конструкциях. После запуска генератора 131072 раз в секунду начинает срабатывать прерывание, в котором происходит приращение значения аккумулятора, отсечение первых 8 бит от значения переменной и вызов соответствующего элемента массива. Весь процесс занимает 113 тактов микроконтроллера.

В отличие от аналогов, задание частоты производится с цифровой клавиатуры, а не при помощи кнопок «+» и «-», что повышает скорость использования генератора. Продумайте обязательно интерфейс управления прибором. Сколько необходимо совершить телодвижений что бы задать частоту 32698 Гц? Хорошая идея использовать энкодер.
Если на выходе необходимо получить только синусоидальный сигнал, то хорошей идеей будет установить фильтр низких частот, который бы отсекал шумы, на гармониках частоты дискретизации. Но это неприемлемо, если генератор сигналов на выходе имеет прямоугольный сигнал – фильтр завалит фронты.

Несмотря на то, что согласно теореме Котельникова (Найквиста) для восстановления с частотой f нужно производить отсчеты (дискретизацию) с частотой 2f восстанавливаемый сигнал будет иметь искажения формы. Таким образом хоть предельная восстанавливаемая частота составляет 65536 Гц реально потолок порядка 20 000 Гц. На высоких частотах форма сигнала синусоиду напоминать не будет совсем, поэтому при наладке схем учитывайте эту особенность.

Клавиатура представляет собой неполную матрицу 4*4 которая опрашивается динамически. ЖК экран WH1602. Корпус приборный промышленный, куплен в МЭК. Окошки выпилены дремелем.

Что бы было бы неплохо сделать:
1) Реализовать программный или аппаратный ШИМ, что позволит использовать генератор для управления мощностью, отдаваемой в нагрузку.
2) Вывести отдельно прямоугольный сигнал высокой частоты, аппаратно генерируемый таймерами на МК (частоты порядка мегагерца)
Оригинал статьи (как обычно наверное ляжет)

Всем доброго времени суток!
Сегодня хочу представить вниманию читателей обзор генератора сигналов произвольной формы JDS6600.
Данная модель генератора способна выводить информацию на цветной TTF дисплей 2,4 inch, выдавать сигнал на два независимых канала частотой до 15 МГц синусоидальной, прямоугольной, треугольной формы и частотой до 6МГц сигналов CMOS/TTL логики, импульсов и сигналов произвольной формы с размахом от 0 до 20 Вольт, имеет вход для измерения частоты, периода, длительности, скважности. Прибор позволяет изменять фазу сигнала от 0 до 359,9 градусов с шагом в 0,1 градуса, смещать сигнал от -9,99 до + 9,99 Вольт (в зависимости от амплитуды сигнала). В памяти генератора прописаны 17 стандартных сигналов, а так же имеется возможность редактировать (создавать/рисовать) необходимую форму сигнала и записывать в 60 ячеек памяти.
Генератор много чего может и, как радиогубитель средней руки, вряд ли всем буду пользоваться.
В линейке генераторов JDS6600 пять модификаций прибора с диапазонами частот – 15 МГц, 30 МГц, 40 МГц, 50 МГц и 60 МГц. В обзоре младшая модель – 15 МГц.
За подробностями приглашаю под кат (много фото).
Начну, пожалуй, не с красивых картинок, а с фотографии, которая дает представление о настольном или полочном рабочем позиционировании генератора с указанием габаритных размеров и таблицы с характеристиками всей линейки генераторов серии JDS6600. Таблица взята из мануала.




Мануал на русском языке можно изучить и .
Габаритные размеры в мануале немно другие, но один-два миллиметра роли не играют.
Приехал прибор в неказистой коробке, которую почта/таможня слегка повредила, но к содержимому отнеслись с почтением – все цело и ничего не потеряли.


Комплект состоит из генератора, блока питания 5 Вольт 2 Ампера с заграничной вилкой, весьма приличного сетевого переходника, диска с ПО, кабеля для подключения к ПК и двух шнуров BNS-крокодилы. Генератор был замотан в пупырку, а все остальные составляющие упакованы в индивидуальные пакеты.

Подключение по USB в качестве источника питания тут не предполагается и потому БП с обычным штекером 2,1*5,5*10 мм. Но позже мы попробуем запитать генератор от другого БП, чтобы выяснить ток потребления на случай питания от Powerank.


Кабель USB тип A - USB тип B для подключения генератора к ПК длиной 1,55 метра.

Шнуры BNS-крокодилы длиной 1,1 метра, с гибкими проводами, припаянными к крокодилам.

Ну, и собственно, виновник обзора в разных ракурсах.
На передней панели расположились кнопка вкл/выкл, экран, ряд серых кнопок справа от него для управления параметрами сигнала, выбора режимов измерений и модуляции, кнопка WAVE выбора вида генерируемого сигнала, MOD активации режима модуляции, SYS системных установок, MEAS выбора режима измерений, стрелки выбора разряда значения частоты и т.д., кнопка ОК для подтверждения кучи всего и включения/отключения двух каналов, СН1/2 кнопки включения/выключения каждого канала, энкодер, измерительный вход и выходы двух каналов.
На тыльной стороне TTL коннектор, разъемы USB и питания, наклейка с наименованием модели и модификации 15М (15МГц), вентиляционные отверстия.


На боковых гранях кроме вентиляционных щелей ничего интересного. Верхняя крышка глухая.

Снизу четыре пластиковые черные ножки, к сожалению скользящие по столу, и откидывающаяся подставка для удобства.


Ножки потом, пожалуй, заменю нескользящими.
Вес генератора 542 грамма и большую часть видимо весит сам корпус.
Заглянем внутрь. Для этого откручиваем четыре длинных самореза снизу, отщелкиваем пластиковой картой переднюю панель, снимаем верхнюю часть корпуса и перед нами внутренний мир генератора.

Как и предполагал, места внутри предостаточно. Блок питания легко бы мог поместиться внутри корпуса, но видимо на его внешний вариант есть свои причины.
Платы соединены шлейфом, разъемы которого плотно сидят в гнездах.
Плата генератора чистая, будто и не пачкали флюсом.

При первом приближении на плате видим, что компонентов довольно много. Из выдающихся – чип мозговой деятельности фирмы Lattice, релюшки Omron, небольшой радиатор, логотип, наименование производителя и модели с ревизией – JDS6600Rev.11. Номер ревизии дает основание полагать, что производитель основательно занимается моделью, постоянно ее совершенствуя.

Заранее извиняюсь, что в этот раз не приведу даташиты на все ключевые элементы, но все их покажу ближе.
За мозговую деятельность отвечает программируемый чип
.

Остальное уберу под спойлер.











Чуть подробнее остановлюсь на компонентах скрытых под радиатором. Это пара высокоскоростных усилителей .

Радиатором их накрыли без термопасты, может и не критично, но при сборке ее добавил.
Плата управления вмещает куда меньше элементов. Следы флюса только в местах ручной пайки кнопки вкл/выкл, энкодера, шлейфа дисплея и разъема.


Кнопки тут вполне себе механические и должны служить долго.


Переходим к сути устройства.
Включение генератора сопровождается сообщением на экране о выборе языка – китайского или английского, процессе загрузки, модели, номере партии. Загрузка длится буквально 1-2 секунды.

Сразу после загрузки на экране появляется информация о предустановленных сигналах подаваемых на оба выхода генератора. Об активности выходов генератора свидетельствует надпись ON на экране и свечение зеленых светодиодов над разъемами выходов. Выключить оба выхода сразу можно нажатием кнопки ОК или по отдельности каждый канал кнопками СН1/2.
Информация о параметрах сигналов на каналах идентична для первого (верхнего) и второго (нижнего) каналов за исключением изображения формы сигнала.

В целом на освоение генератора уходит не так уж много времени, назначение и смысл кнопок интуитивно понятно. Описать словами так, чтобы было понятно читателям сложнее, чем пользоваться в реальности. Посему воспользуемся картинками из манула.
Еще раз о назначении органов управления, отображения информации.

Суть отображаемой информации и кнопок справа от экрана.

Назначение функциональных кнопок

После включения на двух выходах по умолчанию присутствует синусоидальный сигнал частотой 10 кГц, размахом 5 Вольт, заполнением 50%, смещением 0 Вольт и фазовым сдвигом между каналами 0 градусов. Серыми кнопками справа эти параметры меняются и рассказывать тут особо нечего. Выбрали нужный параметр, далее кнопками со стрелками выбрали разряд изменяемого параметра и энкодером меняем значение.
Наибольший интерес вызывают кнопки WAVE выбора вида генерируемого сигнала, MOD активации режима модуляции, SYS системных установок, MEAS выбора режима измерений.
При нажатии на кнопку WAVE на экране появляется следующее изображение и становится доступен выбор формы сигнала.

К серым кнопкам привязаны 4 основных сигнала (синусоида, меандр, импульс, треугольник) и произвольная форма, прописанная в первой ячейке памяти, зарезервированной для этого.
Гораздо большее количество сигналов можно выбрать, вращая ручку энкодера. Этот способ дает возможность выбрать:
17 предустановленных сигналов – Sine, Sguare, Pulse, Triangle, PartialSine, CMOS, DC, Half-Wave, Full-Wave, Pos-Ladder, Neg-Ladder, Noise, Exp-Rise, Exp-Decay, Multi-Tone, Sinc, Lorenz
и 15 произвольных сигналов Arbitrary. С завода эти 15 ячеек пустые, в них ничего не записано – на выходе 0 Вольт, 0 Герц. Их заполнение рассмотрим после установки ПО.
В мануале идет речь о амплитуде сигнала и ее регулировке от 0 до 20 Вольт. На самом деле о регулировке амплитуды можно говорить только для отдельных сигналов, в основном речь идет о размахе.

Синусоида размахом 5В (на генераторе ampl 5V, осциллограф показывает значение размаха, хоть и пишет про амплитуду).

Меандр 5В (на генераторе ampl 5V, осциллограф показывает значение размаха, но пишет про амплитуду).

Разницы между Sguare и Pulse на осциллограмме не заметил. Как был меандр, так и остается при переключении, поэтому скрин не выкладываю.
Исправлено благодаря
До тех пор не видно разницы пока не начнешь менять коэффициент заполнения DUTY. DUTY меняется только в Pulse, в режиме меандр Sguare коэффициент заполнения меняется только на экране генератора - на осциллограмме это никак не отражается.

Треугольный сигнал (на генераторе ampl 5V, осциллограф показывает значение размаха, но пишет про амплитуду).

Следующий сигнал Partial Sine – частичный синус, но разницы с Sineна осциллограмме так же не заметил и скрин не выкладываю.
Исправлено благодаря
Здесь ситуация, как и с сигналом Pulse, изменяем коэффициент заполнения и получаем изменения синусоиды. DUTY меняется только в Partial Sine, в режиме Sine коэффициент заполнения меняется только на экране генератора - на осциллограмме это никак не отражается.

Следующий сигнал CMOS.Здесь размах/амплитуда регулируется от 0,5 до 10 Вольт, несмотря на то что ручкой энкодера на экране выставляется до 20 Вольт.

Следующим идет сигнал DC, но на осциллограмме тишина.

Далее сигнал Half-Wave вот тут как раз мы видим амплитуду. Для сравнения на втором канале установил синусоиду. Хоть на генераторе указана амплитуда 5 вольт и осциллограф пишет ampl, но мы видим, что как раз измеряется размах синусоиды и амплитуда Half-Wave.

На Full-Wave так же видим измерение амплитуды и, при установленной частоте на генераторе 10 кГц, 20 кГц по осциллограмме.

Сигналы Pos-Ladder и Neg-Ladder задал на первом и втором каналах, соответственно. Снова видим размах.

Шумы на обоих каналах шумят независимо друг от друга с разными параметрами.

Снова для наглядности и экономии времени читателей сигналы Exp-Rise и Exp-Decay на разных каналах.

По той же схеме Multi-Tone и Sinc.

Сигналы Lorenz.

Следующая полезная функция прибора – функция измерения/счетчика. Прибор позволяет измерять сигнал частотой до 100 МГц. Активируется функция кнопкой Meas. Переключение между измерениями и счетчиком можно сделать тремя способами – кнопкой Funk, кнопками со стрелками и энкодером.

Кнопкой Coup выбираем открытый или закрытый вход, кнопкой Mode – частоту или периоды подсчета.
Обозреваемый JDS6600 позволяет измерять то, что он же и генерирует. Задаем параметры сигнала на выходе генератора и подключаем к измерительному входу.

Следующая функция модуляции. Активируется кнопкой MOD. Здесь доступны три режима: генератор качающейся частоты - Sweep Frequency, генератор импульсов – Pulse Generator и генератор пачки импульсов – Burst. Режимы выбираются кнопкой Func.
Свипирование возможно на двух каналах, но не одновременно - либо первый, либо второй.

Стрелками или энкодером выбираем канал, устанавливаем начальную и конечную частоту сигнала (форму сигнала выбираем заранее в режиме Wave), линейную или логарифмическую зависимость и включаем ON.
Логарифмическая.

Линейная

Режим Pulse Generator (только первый канал).


Режим генерации пачек импульсов Burst (первый канал).

Здесь можно задать количество импульсов в пачке от 1 до 1 048 575 и выбрать режимы
Две пачки импульсов

Сто пачек импульсов

471 пачка.

Обратите внимание на изменение Vmin, Vmax с ростом количества пачек. При малом их количестве импульсы имеют отрицательную полярность, дальше картина иная. Кто может объяснить, прошу прояснить в комментариях.
Исправлено благодаря , который указал на ошибку в выборе режима AC coupling на осциллографе. При изменении на DC все встало на свои места, за что прошу отметиться в qu1ck.

В режиме Burst четыре вида синхронизации (Как я понял. Если ошибаюсь поправьте) – от второго канала генератора – CH2 Trig, внешняя синхронизация – Ext.Trig (AC) и Ext.Trig (DC) и Manual Trig – ручная.
Следующая функциональная кнопка – это кнопка SYS, открывающая доступ к установкам генератора. Возможно следовало описать эту часть в начале, но двигался по наибольшей востребованности функций.

Кроме включения/отключения звуковых сигналов при нажатии кнопок, регулировки яркости экрана, выбора языка (китайский, английский) и сброса до заводских настроек, здесь можно поменять количество отображаемых/вызываемых ячеек произвольных сигналов (с завода 15, можно установить все 60), загрузить/записать 100 ячеек памяти и синхронизировать каналы по форме сигнала, частоте, амплитуде (размаху), заполнению, смещению.

Суть 60 ячеек и 100 ячеек станет понятна чуть позже, после подключения к ПК.
Для подключения генератора к компьютеру необходимо с диска из комплекта установить ПО.
Распаковав архив, сначала нужно установить драйвер CH340Q из папки h340 drive (архив Ch340.rar), далее установить программый драйвер VISA из папки VISA (установщик setup.exe), а уже потом установщик управляющей программы из папки English\JDS6600 application\Setup.exe
При подключенном к компьютеру генераторе и запуске программы необходимо выбрать виртуальный СОМ, куда подключен прибор и кликнуть кнопку Connect. Если порт выбран правильно, то увидим такую картинку.

Оболочка интерфейса представлена четырьмя вкладками – первая Configuration для соединения c ПК.
Вторая вкладка – Control Panel – панель управления генератором. Здесь все тоже самое, что и при управлении с лицевой панели прибора, но гораздо удобнее.

Все опции собраны на одном экране и привычные манипуляции мышью очень облегчают манипуляции с генератором. Кроме того, на этой вкладке одновременно с операциями над сигналами доступна синхронизация каналом, что с лицевой панели генератора нужно было делать через системные настройки генератора.
Далее вкладка Extend Function – аналог действиям кнопок MEAS и MOD на лицевой панели прибора, только на одном экране. Но есть и разница – не нашлось места в виртуальной среде для функции Pulse Generator в режиме Modulation Mode (MOD). С лицевой панели в режиме MOD доступны три функции – качения частоты, генератор импульсов и генератор пачек импульсов. С компьютера доступны только Sweep Frequency и Burst.

И последняя вкладка Arbitrary позволяет создавать свои формы сигналов и записывать их в изначально пустые ячейки памяти генератора (60 штук).

Можно начать с чистого листа, как на скрине выше, а можно взять за основу предустановленный сигнал (17 штук) и изголяться над ним, а потом записать в одну из 60 ячеек произвольных сигналов.

Для наглядности записал в ячейку памяти Arbitrary 01 такой сигнал.

И на осциллограмме видим следующее:

Здесь можно поменять амплитуду, смещение, фазу, но почему-то нельзя изменить коэффициент заполнения.
Вот теперь хочу вернуться к 60 и 100 ячейкам. Методом научного тыка и сравнений результатов вычислил, что кнопкой SYS на панели генератора можно открыть и сделать доступными до 60 ячеек произвольных сигналов (с завода 15), которые можно создать с помощью ПО и записать их в эти 60 ячеек.
Таким образом, становится доступны с панели генератора и вкладки Control Panel 17 стандартных и 60 произвольных сигналов.
Но, если и этот набор не достаточен, если какие-то сигналы Вами востребованы, а каких-то нет вообще (как, например, отсутствие прямой и обратной пил) и их нельзя создать с помощью ПО (например, из-за невозможности манипуляций с коэффициентом заполнения из программной оболочки), то новый сигнал можно создать с панели генератора, изменив любой параметр. Далее нужно в меню SYS выбрать номер ячейки от 00 до 99 (те самые 100) и кнопкой SAVE записать сигнал в эту ячейку. Теперь, когда он Вам понадобится, заходим в SYS, выбираем номер ячейки с этим сигналом и кнопкой LOAD загружаем его из памяти.
Т.е. по факту можно использовать 177 сигналов!!! 17 предустановленных + 60 произвольных + 100 загружаемых из памяти, когда это требуется.

В завершающей части обзора посмотрим, до каких частот генератор сохраняет приличные формы сигнала.
Синусоида 100 кГц 5В и 1 МГц 5В.

Синусоида 6 МГц 5В и 10 МГц 5В

Как видим, имеет место снижение размаха сигнала и оно не зависит от величины нагрузки. Без нагрузки вовсе, 1 кОм, 10 кОм, 47 кОм – снижение размаха есть всегда, но всегда в районе 0,5 Вольта.
В районе 13 МГц размах снижается на 0,7 вольт, но далее, при установленных 5 Вольтах размаха, падение не увеличивается.

Синусоида 15 МГц 10 Вольт – тут снижение размаха уже больше. Но это уже 15 МГц.

Дальше была выявлена особенность генератора JDS6600-15M – заявленная амплитуда в 20 Вольт, касается только сигналов (любой формы) частотой до 10 МГц. Ожидаемо амплитуда/размах ниже установленных значений. Щуп 1/10.

В диапазоне 10-15 МГц максимально возможная амплитуда/размах составляет 10 Вольт. Энкодером или в программе устанавливаем 20 Вольт (на экране генератора видим установленные 20 Вольт), потом частоту выше 10 МГц и показания амплитуды на экране прибора переключаются на 10 Вольт. Соответственно на выходе 10 Вольт. Такая особенность.

С формой синусоиды будто бы все в порядке, посмотрим меандр.
10 кГц 5В и 100 кГц 5В.

1МГц 5В и 6 Мгц 5 В.

6МГц 10В и 6 МГц 20В.
Здесь уже видно, что на высоких частотах меандр стремится к синусоиде, что присуще многим генераторам.

Треугольник 100 кГц 5В и 1 МГц 5В.

С повышением частоты и амплитуды форма сигнала начинает изменяться.
5 МГц 5В и 5 МГц 12В.

Формы сигналов на больших частотах далеки от идеальных, но к этому был готов. Опытным людям цена прибора многое скажет, для не искушенных пользователей материал изложил – надеюсь, он будет полезен. В описании генератора присутствует маркетинг и я, наверняка изложил, не все, что можно выжать из прибора, но основное показал. Возможно, старшие модели в линейке 6600 грешат меньше, но и стоят они дороже. Предоставленный экземпляр можно охарактеризовать как, генератор начального, бюджетного уровня для своего круга задач – ознакомление, обучение, радиолюбительство, быть может, какое-то не особо сложное и требовательное производство.
Из минусов отмечу снижение амплитуды/размаха сигнала с ростом частоты, отсутствие пил (но можно самому сгенерировать, изменив коэффициент заполнения и записав в ячейку).
Разработчику хотелось бы пожелать не увлекаться маркетингом, допилить чуть ПО.
Из плюсов все таки широкий фукнционал, возможность редактировать сигналы, записывать их в ячейки памяти, интуитивно понятное управление, два независимых канала.
В завершении замена штатного блока питания и измерение тока потребления.

Ток потребления не превышает одного Ампера и можно питать генератор от Power bank, обзаведясь соответствующим шнуром.
Если чего то не показал, то формулируйте подробный вопрос - генератор на столе, проведу опыт.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +17 Добавить в избранное Обзор понравился +43 +61