Android Linux Windows

Спектральное представление сигналов. Амплитудный спектр сигнала

) мы познакомились с понятием гармонической (синусоидальной ) функции. А бывают ли негармонические функции и сигналы и как с ними работать? В этом нам и предстоит сегодня разобраться 🙂

Гармонические и негармонические сигналы.

И для начала давайте чуть подробнее разберемся, как же классифицируются сигналы. В первую очередь нас интересуют гармонические сигналы, форма которых повторяется через определенный интервал времени , называемый периодом. Периодические сигналы в свою очередь делятся на два больших класса – гармонические и негармонические. Гармонический сигнал – это сигнал, который можно описать следующей функцией:

Здесь – амплитуда сигнала, – циклическая частота, а – начальная фаза. Вы спросите – а как же синус? Разве синусоидальный сигнал не является гармоническим? Конечно, является, дело в том, что , то есть сигналы отличаются начальной фазой, соответственно, синусоидальный сигнал не противоречит определению, которое мы дали для гармонических колебаний 🙂

Вторым подклассом периодических сигналов являются негармонические колебания . Вот пример негармонического сигнала:

Как видите, несмотря на “нестандартную” форму, сигнал остается периодическим, то есть его форма повторяется через интервал времени, равный периоду.

Для работы с такими сигналами и их исследования существует определенная методика, которая заключается в разложении сигнала в ряд Фурье . Суть методики состоит в том, что негармонический периодический сигнал (при выполнении определенных условий) можно представить в виде суммы гармонических колебаний с определенными амплитудами, частотами и начальными фазами. Важным нюансом является то, что все гармонические колебания, которые участвуют в суммировании, должны иметь частоты, кратные частоте исходного негармонического сигнала. Возможно это пока не совсем понятно, так что давайте рассмотрим практический пример и разберемся чуть подробнее 🙂 Для примера используем сигнал, который изображен на рисунке чуть выше. Его можно представить следующим образом:

Давайте изобразим все эти сигналы на одном графике:

Функции , называют гармониками сигнала, а ту из них, период которой равен периоду негармонического сигнала, называют первой или основной гармоникой . В данном случае первой гармоникой является функция (ее частота равна частоте исследуемого негармонического сигнала, соответственно, равны и их периоды). А функция представляет из себя ни что иное как вторую гармонику сигнала (ее частота в два раза больше). В общем случае, негармонический сигнал раскладывается на бесконечное число гармоник:

В этой формуле – амплитуда, а – начальная фаза k-ой гармоники. Как мы уже упомянули чуть ранее, частоты всех гармоник кратны частоте первой гармоники, собственно, это мы и видим в этой формуле 🙂 – это нулевая гармоника, ее частота равна 0, она равна среднему значению функции за период. Почему среднему? Смотрите – среднее значения функции синуса за период равно 0, а значит при усреднении в этой формуле все слагаемые, кроме будут равны 0.

Совокупность всех гармонических составляющих негармонического сигнала называют спектром этого сигнала. Различают фазовый и амплитудный спектр сигнала:

  • фазовый спектр сигнала – совокупность начальных фаз всех гармоник
  • амплитудный спектр сигнала – амплитуды всех гармоник, из которых складывается негармонический сигнал

Давайте рассмотрим амплитудный спектр поподробнее. Для визуального изображения спектра используют диаграммы, представляющие из себя набор вертикальных линий определенной длины (длина зависит от амплитуды сигналов). На горизонтальной оси диаграммы откладываются частоты гармоник:

По горизонтальной оси могут откладываться как частоты в Гц, так и просто номера гармоник, как в данном случае. А по вертикальной оси – амплитуды гармоник, тут все понятно:). Давайте построим амплитудный спектр сигнала для негармонического колебания, которое мы рассматривали в качестве примера в самом начале статьи. Напоминаю, что его разложение в ряд Фурье выглядит следующим образом:

У нас есть две гармоники, амплитуды которых равны, соответственно, 2 и 1.5. Поэтому на диаграмме две линии, длины которых соответствуют амплитудам гармонических колебаний.

Фазовый спектр сигнала строится аналогично, за той лишь разницей, что используются начальные фазы гармоник, а не амплитуды.

Итак, с построением и анализом амплитудного спектра сигнала мы разобрались, давайте перейдем к следующей теме сегодняшней статьи – к понятию амплитудно-частотной характеристики.

Амплитудно-частотная характеристика (АЧХ).

АЧХ является важнейшей характеристикой многих цепей и устройств – фильтров, усилителей звука и т. д. Даже простые наушники имеют свою собственную амплитудно-частотную характеристику. Что же она показывает?

АЧХ – это зависимость амплитуды выходного сигнала от частоты входного сигнала.

Как мы выяснили в первой части статьи, негармонический периодический сигнал можно разложить в ряд Фурье. Но нас сейчас интересует, в первую очередь, аудио-сигнал, и выглядит он следующим образом:

Как видите, ни о какой периодичности здесь не идет речи 🙂 Но, к счастью, существуют специальные алгоритмы, которые позволяют представить звуковой сигнал в виде спектра входящих в него частот. Мы сейчас не будем подробно разбирать эти алгоритмы, это тема для отдельной статьи, просто примем тот факт, что они позволяют нам осуществить такое преобразование с аудио-сигналом 🙂

Соответственно, мы можем построить диаграмму амплитудного спектра звукового сигнала. А пройдя через какую-либо цепь (к примеру, через наушники при воспроизведении звука) сигнал будет изменен. Так вот амплитудно-частотная характеристика как раз и показывает, какие изменения будет претерпевать входной сигнал при прохождении через ту или иную цепь. Давайте обсудим этот момент чуть поподробнее…

Итак, на входе мы имеем ряд гармоник. Амплитудная-частотная характеристика показывает, как изменится амплитуда той или иной гармоники при прохождении через цепь. Рассмотрим пример АЧХ:

Разберемся поэтапно, что же тут изображено… Начнем с осей графика АЧХ. По оси y мы откладываем величину выходного напряжения (или коэффициента усиления, как на данном рисунке). Коэффициент усиления мы откладываем в дБ, соответственно величина, равная 0 дБ, соответствует усилению в 1 раз, то есть амплитуда сигнала остается неизменной. По оси x откладываются частоты входного сигнала. Таким образом, в рассматриваемом случае для всех гармоник, частоты которых лежат в интервале от 100 до 10000 Гц, амплитуда не изменится. А сигналы всех остальных гармоник будут ослаблены.

На графике отдельно отмечены частоты и – их отличительной особенностью является то, что сигнал гармоник данных частот будет ослаблен в 1.41 раза (3 дБ) по напряжению, что соответствует уменьшению в 2 раза по мощности. Полосу частот между и называют полосой пропускания. Получается следующая ситуация – сигналы всех гармоник, частоты которых лежат в пределах полосы пропускания устройства/цепи будут ослаблены менее, чем в 2 раза по мощности.

Частотный диапазон аудиоустройств обычно разбивают на низкие, средние и высокие частоты. Приблизительно это выглядит так:

  • 20 Гц – 160 Гц – область низких частот
  • 160 Гц – 1.28 КГц – область средних частот
  • 1.28 КГц – 20.5 КГц – область высоких частот

Именно такую терминологию обычно можно встретить в разных программах-эквалайзерах, используемых для настройки звука. Теперь вы знаете, что красивые графики из таких программ являются именно амплитудно-частотными характеристиками, с которыми мы познакомились в сегодняшней статье 🙂

В завершении статьи посмотрим на пару АЧХ, полученных в программном эквалайзере:

Здесь мы можем видеть амплитудно-частотную характеристику усилителя. Причем усилены будут преимущественно средние частоты диапазона.

А здесь ситуация совсем другая – низкие и верхние частоты усиливаются, а в области средних частот для гармоник с частотой 500 Гц мы наблюдаем значительное ослабление.

А здесь усиливаются только низкие частоты. Аудиоаппаратура с такой АЧХ будет обладать высоким уровнем басов 🙂

На этом мы заканчиваем нашу сегодняшнюю статью, спасибо за внимание и ждем вас на нашем сайте снова!

Спектральное представление сигналов

Любой сигнал можно разложить на составляющие. Такое разложение сигнала называется спектральным. При этом сигнал можно представить в виде графика зависимости параметров сигнала от частоты, такая диаграмма называется спектральной или спектром сигнала.

Спектр сигнала - это совокупность простых составляющих сигнала с определенными амплитудами, частотами и начальными фазами. Между спектром сигнала и его формой существует жесткая взаимосвязь: изменение формы сигнала приводит к изменению его спектра и наоборот, любое изменение спектра сигнала приводит к изменению его формы. Это важно запомнить, поскольку при передаче сигналов в системе передачи, они подвергаются преобразованиям, а значит, происходит преобразование их спектров.

Различают два вида спектральных диаграмм: - спектральная диаграмма амплитуд; - спектральная диаграмма фаз.

В спектральной диаграмме амплитуд - отображаются все составляющие со своими амплитудами и частотами. В спектральной диаграмме фаз - отображаются все составляющие со своими начальными фазами и частотами. Любой сигнал имеет одну спектральную диаграмму амплитуд и одну спектральную диаграмму фаз, в составе которых может содержаться множество составляющих.

Не зависимо от того, какой спектр (амплитуд или фаз), он изображается в виде множества линий - составляющих. В спектре амплитуд высота спектральной линии равна амплитуде составляющей сигнала, а в спектре фаз - начальной фазе составляющей. Причем: в спектре амплитуд все составляющие имеют положительные значения, а в спектре фаз как положительные, так и отрицательные. Если амплитуда спектральной составляющей имеет отрицательный знак, то в спектре амплитуд она берется по модулю, а в спектре фаз знак составляющей изменяется на противоположный.

Классификация спектров сигналов. 1. По виду спектры бывают дискретными (линейчатыми) или сплошными . Дискретным является спектр, у которого можно выделить отдельные составляющие. Сплошным является спектр, у которого нельзя выделить отдельные составляющие, так как они расположены настолько близко, что сливаются друг с другом. 2. По диапазону частот различают спектры ограниченные и неограниченные . Ограниченным является спектр, у которого вся энергия сигнала (все спектральные составляющие) находятся в ограниченном диапазоне частот (fmax ? ?). Неограниченным является спектр, у которого вся энергия сигнала находится в неограниченном диапазоне частот (fmax ? ?). На практике такие спектры ограничивают.

Спектральное представление периодических сигналов

1. Гармоническое колебание. Математическая модель гармонического колебания имеет вид:

u(t)=Ums sin (?st+?s) (11)

Как видно из математической модели, в спектре данного колебания присутствует одна гармоническая составляющая, которая находится на частоте?s. Высота составляющей в спектре амплитуд равна амплитуде колебания Ums, а в спектре фаз - начальной фазе колебания?s. Причем при построении спектра необходимо учитывать связь между временной диаграммой сигнала и спектром амплитуд. Амплитуда составляющей спектра должна по высоте соответствовать амплитуде колебания на временной диаграмме. Необходимо отметить, что при увеличении частоты сигнала, его составляющая будет удаляться по оси частот от нуля (рисунок 13).

Рисунок 13 - Спектральное представление гармонических колебаний

Как видно из рисунков, спектр гармонического колебания является дискретным и ограниченным. 2. Периодические, негармонические сигналы. Основной особенностью спектрального представления таких сигналов является наличие в их спектре множества спектральных составляющих. Такие сигналы могут быть описаны рядом Фурье, согласно которому:
т. е. сигнал может быть представлен суммой постоянной составляющей и множества гармонических составляющих.

Преобразуем данный ряд, используя тригонометрическое свойство

sin(x+y) = sin x cos y + cos x sin y (13)

Полагая что x=?k и y=k?ct получим:

Поскольку Umk и?k являются параметрами ряда, то их можно обозначить коэффициентами

Umk sin ? k = ak; Umk cos ?k = bk (15)

Тогда ряд примет вид:

Параметры ряда можно определить через коэффициенты ak и bk:

где k=1, 2, 3 …

Амплитуда постоянной составляющей и коэффициенты могут быть определены через значение сигнала u(t):

Из ряда следует, что если описываемый сигнал является четной функцией f(t)=f(-t), то ряд будет иметь только косинусоидальные составляющие, так как bk=0, если нечетная функция (f(t) ? f(-t)), то рад содержит только синусоидальные составляющие (ak=0). Рассмотрим спектральное представление периодических, негармонических сигналов на примере периодической последовательности прямоугольных импульсов (ПППИ). При построении спектра необходимо рассчитать следующие параметры: а) скважность сигнала:

б) значение постоянной составляющей:

в) частоту первой гармоники спектра, которая равна частоте сигнала:

г) амплитуды гармонических составляющих спектра:

При построении спектра необходимо отметить следующие особенности: 1. Все гармонические составляющие находятся на частотах, кратных частоте первой гармоники (2?1, 3?1, 4?1 и т. д.); 2. Для спектра амплитуд: а) спектр ПППИ имеет лепестковый характер, т. е. в спектре можно выделить множество «лепестков»; б) количество гармонических составляющих в лепестке зависит от скважности и равно q - 1; в) амплитуды гармонических составляющих, находящихся на частотах, кратных скважности, равны нулю; г) форма спектра обозначается огибающей - пунктирной линией, плавно соединяющей вершины гармонических составляющих; д) точка, из которой исходит огибающая, равна 2U0 или 2I0. 3. Для спектра фаз: а) все гармонические составляющие, на частотах, не кратных скважности, имеют одинаковую высоту, равную?/2 (90°); б) все гармонические составляющие в одном лепестке имеют одинаковый знак, а в соседних противоположный. в) составляющие на частотах кратных скважности имеют начальную фазу равную нулю. Спектры ПППИ при скважности q=3 представлены на рисунке 14. Как видно из диаграмм спектр ПППИ является дискретным и неограниченным. Поэтому за ширину спектра принимают диапазон частот, в пределах которого находится два первых лепестка, т. к. в них содержится около 95% энергии сигнала:

Fs = 2/?и. (26)

Рисунок 14 - Спектральное представление ПППИ: а) временная диаграмма; б) спектральная диаграмма амплитуд; в) спектральная диаграмма фаз

Как видно из формулы ширина спектра ПППИ зависит только от длительности импульса и не зависит от его периода. 3. Непериодические сигналы . Поскольку в непериодических сигналах нельзя выделить период, т. к. Т??, то рассчитать и построить спектр тем же методом, что и для периодических сигналов нельзя. Однако знать спектр таких сигналов необходимо, т. к. все информационные сигналы являются непериодическими. Для построения спектра непериодического сигнала производят следующую процедуру: сигнал мысленно представляют как периодический с произвольным периодом, ддля которого строят спектр. Затем осуществляют предельный переход устремляя период к бесконечности (Т??) (рисунок 15). При этом частота первой гармоники и, соответственно, расстояние между гармоническими составляющими стремится к нулю (f1=1/Т), поэтому все составляющие сливаются друг с другом и образуют сплошной спектр.

Рисунок 15 - Импульсный сигнал u(t) и его представление периодическим сигналом

Форма спектра непериодических сигналов обозначается огибающей (сплошной линией) (рисунок 16).

Рисунок 16 - Спектральная диаграмма непериодического сигнала

Ряд Фурье, для таких сигналов, также нельзя записать, т. к. в этом случае амплитуда постоянной составляющей и коэффициенты ak и bk равны нулю. В этом случае значение сигнала в любой момент времени также равно нулю, что является не верным. Поэтому для таких сигналов используют преобразования Фурье:

Выражение (27) является обратным преобразованием, а (28) прямым преобразованием Фурье. Величина S(?) является комплексной спектральной плотностью непериодического сигнала u(t). Она равна:

S(?) = S(?)e ^(-j?(?)) (29)

где S(?) спектральная плотность амплитуд или амплитудный спектр непериодического сигнала, а?(?) - фазовый спектр непериодического сигнала. Спектральная плотность амплитуд непериодического сигнала на любой частоте? равна суммарной амплитуде составляющих находящихся в малой полосе?? в окрестностях частоты? пересчитанных на 1 Герц. Временные диаграммы и спектральные плотности амплитуд для прямоугольного и треугольного импульсов представлены на рисунке 18:

Рисунок 18 - Спектральное представление непериодических сигналов: а) прямоугольный импульс; б) треугольный импульс

Любой сигнал можно разложить на составляющие. Такое разложение сигнала называется спектральным. При этом сигнал можно представить в виде графика зависимости параметров сигнала от частоты, такая диаграмма называется спектральной или спектром сигнала.

Спектр сигнала — это совокупность простых составляющих сигнала с определенными амплитудами, частотами и начальными фазами.
Между спектром сигнала и его формой существует жесткая взаимосвязь: изменение формы сигнала приводит к изменению его спектра и наоборот, любое изменение спектра сигнала приводит к изменению его формы. Это важно запомнить, поскольку при передаче сигналов в системе передачи, они подвергаются преобразованиям, а значит, происходит преобразование их спектров.

Различают два вида спектральных диаграмм:
— спектральная диаграмма амплитуд;
— спектральная диаграмма фаз.

В спектральной диаграмме амплитуд — отображаются все составляющие со своими амплитудами и частотами.
В спектральной диаграмме фаз — отображаются все составляющие со своими начальными фазами и частотами.
Любой сигнал имеет одну спектральную диаграмму амплитуд и одну спектральную диаграмму фаз, в составе которых может содержаться множество составляющих.

Не зависимо от того, какой спектр (амплитуд или фаз), он изображается в виде множества линий — составляющих. В спектре амплитуд высота спектральной линии равна амплитуде составляющей сигнала, а в спектре фаз — начальной фазе составляющей. Причем: в спектре амплитуд все составляющие имеют положительные значения, а в спектре фаз как положительные, так и отрицательные. Если амплитуда спектральной составляющей имеет отрицательный знак, то в спектре амплитуд она берется по модулю, а в спектре фаз знак составляющей изменяется на противоположный.

Классификация спектров сигналов.
1. По виду спектры бывают дискретными (линейчатыми) или сплошными .
Дискретным является спектр, у которого можно выделить отдельные составляющие.
Сплошным является спектр, у которого нельзя выделить отдельные составляющие, так как они расположены настолько близко, что сливаются друг с другом.
2. По диапазону частот различают спектры ограниченные и неограниченные .
Ограниченным является спектр, у которого вся энергия сигнала (все спектральные составляющие) находятся в ограниченном диапазоне частот (fmax ? ?).
Неограниченным является спектр, у которого вся энергия сигнала находится в неограниченном диапазоне частот (fmax ? ?). На практике такие спектры ограничивают.

Спектральное представление периодических сигналов

1. Гармоническое колебание.
Математическая модель гармонического колебания имеет вид:

u(t)=Ums sin (?st+?s) (11)

Как видно из математической модели, в спектре данного колебания присутствует одна гармоническая составляющая, которая находится на частоте?s. Высота составляющей в спектре амплитуд равна амплитуде колебания Ums, а в спектре фаз — начальной фазе колебания?s. Причем при построении спектра необходимо учитывать связь между временной диаграммой сигнала и спектром амплитуд. Амплитуда составляющей спектра должна по высоте соответствовать амплитуде колебания на временной диаграмме.
Необходимо отметить, что при увеличении частоты сигнала, его составляющая будет удаляться по оси частот от нуля (рисунок 13).

Рисунок 13 - Спектральное представление гармонических колебаний

Как видно из рисунков, спектр гармонического колебания является дискретным и ограниченным.
2. Периодические, негармонические сигналы.
Основной особенностью спектрального представления таких сигналов является наличие в их спектре множества спектральных составляющих. Такие сигналы могут быть описаны рядом Фурье, согласно которому:

т. е. сигнал может быть представлен суммой постоянной составляющей и множества гармонических составляющих.

Преобразуем данный ряд, используя тригонометрическое свойство

sin(x+y) = sin x cos y + cos x sin y (13)

Полагая что x=?k и y=k?ct получим:

Поскольку Umk и?k являются параметрами ряда, то их можно обозначить коэффициентами

Umk sin ? k = ak; Umk cos ?k = bk (15)

Тогда ряд примет вид:

Параметры ряда можно определить через коэффициенты ak и bk:

где k=1, 2, 3 …

Амплитуда постоянной составляющей и коэффициенты могут быть определены через значение сигнала u(t):

Из ряда следует, что если описываемый сигнал является четной функцией f(t)=f(-t), то ряд будет иметь только косинусоидальные составляющие, так как bk=0, если нечетная функция (f(t) ? f(-t)), то рад содержит только синусоидальные составляющие (ak=0).
Рассмотрим спектральное представление периодических, негармонических сигналов на примере периодической последовательности прямоугольных импульсов (ПППИ).
При построении спектра необходимо рассчитать следующие параметры:
а) скважность сигнала:

б) значение постоянной составляющей:

в) частоту первой гармоники спектра, которая равна частоте сигнала:

г) амплитуды гармонических составляющих спектра:

При построении спектра необходимо отметить следующие особенности:
1. Все гармонические составляющие находятся на частотах, кратных частоте первой гармоники (2?1, 3?1, 4?1 и т. д.);
2. Для спектра амплитуд:
а) спектр ПППИ имеет лепестковый характер, т. е. в спектре можно выделить множество «лепестков»;
б) количество гармонических составляющих в лепестке зависит от скважности и равно q — 1;
в) амплитуды гармонических составляющих, находящихся на частотах, кратных скважности, равны нулю;
г) форма спектра обозначается огибающей — пунктирной линией, плавно соединяющей вершины гармонических составляющих;
д) точка, из которой исходит огибающая, равна 2U0 или 2I0.
3. Для спектра фаз:
а) все гармонические составляющие, на частотах, не кратных скважности, имеют одинаковую высоту, равную?/2 (90°);
б) все гармонические составляющие в одном лепестке имеют одинаковый знак, а в соседних противоположный.
в) составляющие на частотах кратных скважности имеют начальную фазу равную нулю.
Спектры ПППИ при скважности q=3 представлены на рисунке 14.
Как видно из диаграмм спектр ПППИ является дискретным и неограниченным. Поэтому за ширину спектра принимают диапазон частот, в пределах которого находится два первых лепестка, т. к. в них содержится около 95% энергии сигнала:

Fs = 2/?и. (26)

Рисунок 14 - Спектральное представление ПППИ: а) временная диаграмма; б) спектральная диаграмма амплитуд; в) спектральная диаграмма фаз

Как видно из формулы ширина спектра ПППИ зависит только от длительности импульса и не зависит от его периода.
3. Непериодические сигналы .
Поскольку в непериодических сигналах нельзя выделить период, т. к. Т??, то рассчитать и построить спектр тем же методом, что и для периодических сигналов нельзя. Однако знать спектр таких сигналов необходимо, т. к. все информационные сигналы являются непериодическими. Для построения спектра непериодического сигнала производят следующую процедуру: сигнал мысленно представляют как периодический с произвольным периодом, ддля которого строят спектр. Затем осуществляют предельный переход устремляя период к бесконечности (Т??) (рисунок 15). При этом частота первой гармоники и, соответственно, расстояние между гармоническими составляющими стремится к нулю (f1=1/Т), поэтому все составляющие сливаются друг с другом и образуют сплошной спектр.

Рисунок 15 - Импульсный сигнал u(t) и его представление периодическим сигналом

Форма спектра непериодических сигналов обозначается огибающей (сплошной линией) (рисунок 16).

Рисунок 16 - Спектральная диаграмма непериодического сигнала

Ряд Фурье, для таких сигналов, также нельзя записать, т. к. в этом случае амплитуда постоянной составляющей и коэффициенты ak и bk равны нулю. В этом случае значение сигнала в любой момент времени также равно нулю, что является не верным. Поэтому для таких сигналов используют преобразования Фурье:

Выражение (27) является обратным преобразованием, а (28) прямым преобразованием Фурье.
Величина S(?) является комплексной спектральной плотностью непериодического сигнала u(t). Она равна:

S(?) = S(?)e ^(-j?(?)) (29)

где S(?) спектральная плотность амплитуд или амплитудный спектр непериодического сигнала, а?(?) — фазовый спектр непериодического сигнала.
Спектральная плотность амплитуд непериодического сигнала на любой частоте? равна суммарной амплитуде составляющих находящихся в малой полосе?? в окрестностях частоты? пересчитанных на 1 Герц.
Временные диаграммы и спектральные плотности амплитуд для прямоугольного и треугольного импульсов представлены на рисунке 18:

Рисунок 18 - Спектральное представление непериодических сигналов: а) прямоугольный импульс; б) треугольный импульс

2.1. Спектры периодических сигналов

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными . Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

негармонического сигнала

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

(2.1)

где k - номер гармоники; - угловая частота k - ой гармоники;

ω 1 = ω =2 π / T - угловая частота первой гармоники; - нулевая гармоника.

Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

Разложение в ряд Фурье периодических функций

Таблица 2

График f (t )

Ряд Фурье функции f (t )

Примечание

k=1,3,5,...

k=1,3,5,...

k=1,3,5,...

k=1,2,3,4,5

k=1,3,5,...

k=1,2,3,4,5

S=1,2,3,4,..

k=1,2,4,6,..

Сигналы 7 и 8 формируются из синусоиды посредством схем, использующих вентильные элементы.

Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы, называется спектром этого негармонического сигнала. Из этого набора гармоник выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических составляющих, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Аналогично рассматривают фазовые спектры как совокупность начальных фаз всех гармоник; их также изображают в масштабе в виде набора вертикальных линий.

Следует заметить, что начальные фазы в электротехнике принято измерять в пределах от –180 0 до +180 0 . Спектры, состоящие из отдельных линий, называют линейчатыми или дискретными . Спектральные линии находятся на расстоянии f друг от друга, где f - частотный интервал, равный частоте первой гармоники f .Таким образом, дискретные спектры периодических сигналов имеют спектральные составляющие с кратными частотами - f , 2f , 3f , 4f , 5f и т.д.

Пример 2.1. Найти амплитудный и фазовый спектр для сигнала прямоугольной формы, когда длительности положительного и отрицательного сигнала равны, а среднее значение функции за период равно нулю

u (t ) = Vпри0<t <T /2

u (t ) = -VприT /2<t <T

Для сигналов простыхчасто используемых форм решение целесообразно находить с помощью таблиц.

Рис. 2.2. Линейчатый амплитудный спектр прямоугольного сигнала

Из разложения в ряд Фурье сигнала прямоугольной формы (см. табл.2 - 1) следует, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоники. Амплитудный линейчатый спектр гармоник представлен на рис. 2.2. При построении принято, что амплитуда первой гармоники (здесь напряжения) равна одному вольту: B; тогда амплитуда третьей гармоники будет равна B, пятой - B и т.д. Начальные фазы всех гармоник сигнала равны нулю, следовательно, фазовый спектр имеет только нулевые значения ординат.

Задача решена.

Пример 2.2. Найти амплитудный и фазовый спектр для напряжения, изменяющегося по закону: при -T /4<t <T /4; u (t ) = 0 при T /4<t <3/4T . Такой сигнал формируется из синусоиды посредством исключения (схемным путем с использованием вентильных элементов) отрицательной части гармонического сигнала.


а)б)

Рис. 2.3. Линейчатый спектр сигнала однополупериодного выпрямления: а)амплитудный; б)фазовый

Для сигнала однополупериодного выпрямления синусоидального напряжения (см. табл.2 - 8) ряд Фурье содержит постоянную составляющую (нулевую гармонику), первую гармонику и далее набор только четных гармоник, амплитуды которых быстро убывают с ростом номера гармоники. Если, например, положить величину V = 100 B, то, умножив каждое слагаемое на общий множитель 2V/π , найдем (2.2)

Амплитудный и фазовый спектры этого сигнала изображены на рис.2.3а,б.

Задача решена.

В соответствии с теорией рядов Фурье точное равенство негармонического сигнала сумме гармоник имеет место только при бесконечно большом числе гармоник. Расчет гармонических составляющих на ЭВМ позволяет анализировать любое число гармоник, которое определяется целью расчета, точностью и формой негармонического воздействия. Если длительность сигнала t независимо от его формы много меньше периода T , то амплитуды гармоник будут убывать медленно, и для более полного описания сигнала приходится учитывать большое число членов ряда. Эту особенность можно проследить для сигналов, представленных в таблице 2 - 5 и 6, при выполнении условия τ <<T . Если негармонический сигнал по форме близок к синусоиде (например, сигналы 2 и 3 в табл.2), то гармоники убывают быстро, и для точного описания сигнала достаточно ограничиться тремя - пятью гармониками ряда.

Огибающая АЧС последовательности прямоугольных видеоим-пульсов описывается функцией

и пересекает ось частот, когда х кратно л, т. е. п кратно q, τ. е. при частотах, кратных скважности. Поэтому именно эти частоты, равные

отсутствуют в спектре.

Обычно при построении спектров откладывают относительные

величины, т. е. и получают

относительный или нормированный спектр (рис. 15.6).

Спектральные составляющие с наибольшей амплитудой распо-ложены под первыми арками, в них сосредоточена и основная часть энергии сигнала. Поэтому эффективную ширину спектра можно определить как:

Теоретически ширина спектра бесконечна, однако не все его составляющие оказывают действенное влияние на форму сигнала и имеют практическое значение. Поэтому под шириной спектра обычно понимают ограниченный диапазон частот, внутри которого распределена большая часть энергии сигнала. Ширина спектра, так же как, например, полоса пропускания контура, — понятие условное.

Рассмотрим особенности АЧС при изменении длительности и частоты следования импульсов (рис, 15.7).

С уменьшением частоты следования Ω при t И = const происхо-дит сгущение спектра: расстояние между спектральными линиями уменьшается. Ширина спектра, определяемая его огибающей, не меняется, а основная часть энергии распределяется на большем числе гармоник.

С увеличением длительности импульсов при Ω= const ширина арок и связанная с ней ширина спектра уменьшаются: происходит относительное сжатие спектра. Основная часть энергии распреде-ляется на меньшем числе гармоник и сосредоточивается в области все более низких частот.

Таким образом, чем короче импульсы и больше их скважность, тем шире и гуще их спектр, и наоборот.

На практике часто приходится учитывать в спектре лишь ко-нечное число гармоник. Точность аппроксимации исходной функ-ции в этом случае зависит от числа учтенных гармоник. Она ока-зывается достаточной, если учитываются все гармоники, опреде-ляемые заданной шириной спектра.

Фазо-частотный спектр

Как следует из выражений (15.24) и (15.25) начальные фазы гармоник определяются как:

Отсюда следует, что огибающая ФЧС представляет собой пря-мую с углом наклона α, зависящим от сдвига импульсов. Учет из-менения от арки к арке фазы гармоник на я осуществляется соот-ветствующим смещением этой прямой параллельно себе на π вверх или вниз (рис. 15.8).

Каждая арка АЧС имеет ширину, равную qΩ. Поэтому вели-чина сдвига фазы на одну арку составляет угол:

. (15.28)

Поэтому угол наклона α огибающей ФЧС, как это следует и из рис. 15.9, равен арктангенсу от величины сдвига импульсов:


Чем больше сдвиг импульсов во времени, тем больше наклон огибающей их ФЧС (рис. 15.9). При t 0 = 0 угол α равен нулю.

Симметричные частотные спектры имеют аналогичный вид, но построение спектральных линий на них распространяется на ось отрицательных частот. При этом АЧС и ФЧС оказываются симмет-ричными относительно оси ординат и начала отсчета соответ-ственно (рис. 15.10).

Решение.

1. Расстояние между спектральными линиями, равное частоте следования импульсов:

2. Ширина арки:

3. Количество спектральных линий под каждой аркой:

4. Сдвиг фазы на одну арку:

Постоянная составляющая:

6. Т абличные значения функции соответствующие частотам F, 2F, 3F и рассчитанные с их помощью амплитуды и начальные фазы гармоник:

В спектре отсутствуют гармоники, кратные q = 5, т. е. 5F = 50 кГц, lOF = 100 кГц, 15F = 150 кГц и т. д.

СПЕКТРЫ ПЕРИОДИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ПРЯМОУГОЛЬНЫХ РАДИОИМПУЛЬСОВ

Рассчитаем спектр симметричной относительно оси ординат последовательности прямоугольных радиоимпульсов (рис. 15.11):

Здесь и Ω — период и частота следования импульсов;

ω H — несущая частота.

Если несущая частота кратна частоте следования, т. е. ω H = kΩ, где k — целое число, то импульсы называются когерентными, если эти частоты некратны (), то импульсы — некогерентные.

С помощью выражения (15.4) находим постоянную состав-ляющую

В силу симметрии функции относительно оси ординат ряд Фурье будет содержать лишь косинусоиды (b n = 0 ).

Отсюда следует, что амплитуды гармонических составляющих резко возрастают в районе значений частот, близких к ω н, т. е. .По в этом районе значений п второе слагаемое в выражении (15. 32) значительно меньше первого, и им можно прене-бречь. Кроме того, так как ω H >Ω, постоянной составляющей можно также практически пренебречь.

Таким образом, при сделанных допущениях

Отсюда следует, что огибающая АЧС последовательности пря-моугольных радиоимпульсов определяется, так же как и для по-следовательности аналогичных видеоимпульсов, функцией . Разница лишь в том, что эта функция сдвинута по оси частот на величину , а ее максимум вдвое меньше и соответ-ствует частоте . (рис. 15.12).

В спектре некогерентной последовательности радиоимпульсов несущая частота сон отсутствует, и наибольшую ампли-туду имеет составляющая с частотой, близкой к . Если импульсы когерентны, то в их спектре присутствует составляющая несущей частоты, имеющая наибольшую амплитуду, равную (рис. 15.13).

Таким образом, спектр последовательности прямоугольных ра-диоимпульсов совпадает со спектром последовательности прямоугольных видеоимпульсов, смещенным вправо по оси частот на величину ω н. При этом часть спектра, лежащая в области ω<ω н, является зеркальным отображением части спектра, лежащего в области ω> ω н. Сделанные выводы тем точнее, чем ω н >Ω,

При комплексной форме ряда Фурье и построении симметричных спек-тров п принимает не только положительные, но и отрицательные значения. При отрицательных п в формуле (15.32) нельзя пренебречь вторым слагаемым, так как в районе частот , оно становится, наоборот, значительно больше первого слагаемого.

Наиболее эффективные спектральные составляющие, имеющие наибольшие амплитуды, у радиоимпульсов сосредоточены вблизи несущей частоты. Эффективная ширина спектра радиоимпульсов в два раза больше, чем у одинаковых по длительности видеоим-пульсов.

Пример 15.2.

Построить AЧC периодической последовательности прямоугольных радио-импульсов, если U m = 100 мВ; f H =250 МГц; кГц; t И = 100 мкс.

1. Скважность импульсов:

2. Ширина малых арок и половины большой арки:

3. Максимальная ордината огибающей спектра:

4. Так как f H кратно F, импульсы когерентны, основная спектральная со-ставляющая имеет частоту, равную f H = 250 МГц.

В спектре, показанном на рис. 15.13, присутствуют частоты:

отсутствуют частоты:

Амплитуды соответствующих гармоник могут быть непосредственно отсчи-таны из графика как ординаты огибающей, взятые при соответствующих ча-стотах.

СВЯЗЬ МЕЖДУ ФОРМОЙ СИГНАЛА И ЕГО СПЕКТРОМ

Форма сигнала в полной мере определяется лишь совокупно-стью двух его спектров: АЧС и ФЧС. Тем не менее можно устано-вить ряд характерных связей между формой сигнала и парамет-рами его АЧС, которые позволяют на практике, имея АЧС, судить о форме сигнала, и наоборот.

Сравнивая спектры прямоугольных и треугольных импульсов, заметим, что ряд Фурье в случае треугольных импульсов сходится быстрее, чем в случае прямоугольных импульсов, так как ампли-туды гармоник убывают быстрее с ростом их номера (табл. 15.1). Закономерность, по которой уменьшаются амплитуды гармоник с ростом их номера, можно выразить через число раз дифферен-цирования исследуемой функции, необходимое для "выделения из нее дельта-функций. Пусть в k-й производной исследуемой функ-ции появляются дельта-функции. Тогда для коэффициентов Фурье имеют силу неравенства:

где М — постоянная, зависящая от формы сигнала.

Скорость убывания амплитуд гармоник в спектре зависит от структурных свойств сигнала: коэффициенты убывают тем быст-рее, чем более «гладкой» является форма сигнала и его производ-ных. Если сигнал имеет скачкообразные переходы (его функция имеет конечные разрывы) и в его первой производной появляются δ(t)-импульсы, то амплитуды гармоник в его спектре стремятся к нулю очень медленно — порядок 1/п; если"же в пределах пе-риода следования сигнал непрерывен, но в его первой производ-ной имеются конечные разрывы, а во второй — δ(t)-импульсы, то амплитуды его гармоник стремятся к нулю быстрее—порядок не ниже 1/n 2 и τ. д. .Чем быстрее убывают коэффициенты Фурье, чем более «гладкая» форма сигнала, тем меньше ширина его спектра. В пределе имеет место наиболее «гладкое» моногармоническое колебание.

Понятие длительности определено лишь для прямоугольных и сходных с ними импульсов. На практике длительность импульса произвольной формы, так же как и ширину спектра сигнала, определяют энергетическим методом, т. е. как интервал времени, внутри которого сосредоточена большая часть его энергии, на-пример 90%. Ширина спектра импульсов получается тем больше, чем меньше длительность импульсов.

Важным свойством АЧС сиг-нала является то, что произведение длительности импульса на ширину спектра есть величина постоянная для импульсов данной формы:

Это свойство присуще спектрам любых сигналов и играет су-щественную роль при выборе их параметров.

Уменьшение длительности радиолокационных импульсов, на-пример, позволяет увеличить точность определения координат цели. Однако увеличение при этом ширины спектра сигнала за-трудняет обеспечение требуемой помехозащищенности радиопри-емных устройств. Такая противоречивость следует из усло-вия (15.35). Поэтому желательно выбирать такую форму импуль-сов, чтобы произведение имело наименьшую величину. Ана-лиз показывает, что это произведение получается меньше для тех импульсов, которые изменяются во времени более плавно, форма которых более «гладкая». Наименьшая его величина, весьма близ-кая к теоретически достижимому минимуму, получается у коло-колообразных импульсов.