Android Linux Windows

Спектральное представление сигналов. Спектры амплитуд и фаз периодических сигналов Амплитудный и фазовый спектры периодической функции

В соответствии со спектральным способом анализа прохождения сигналов через линейные цепи любой случайный сигнал S (T ) можно представить в виде бесконечной суммы элементарных аналитически однотипных детерминированных сигналов :

(2.8)

Подавая на вход линейной цепи (рис. 1.14), коэффициент передачи которой равен , элементарный детерминированный сигнал, можно найти элементарный отклик цепи, то есть сигнал на выходе цепи.

Рис.2.3. К определению сигнала на выходе линейной цепи.

Сигнал на выходе линейной цепи равен

(2.9)

Поскольку для линейных цепей справедлив принцип суперпозиции, то результирующий отклик будет равен:

(2.10)

Функции, описывающие элементарные сигналы, называются базисными функциями. Представление сигнала базисными функциями упрощается, если они являются ортогональными и ортонормированными.

Набор функций называется ортогональным, Если в интервале от до

при (2.11)

И ортонормированным, Если для всех Выполняется условие

. (2.12)

Ортогональность базисных функций, с помощью которых представляется исходный сигнал , является гарантией того, что представление сигнала может быть сделано единственным образом. Условию ортогональности отвечают гармонические функции кратных частот, а также функции Уолша, которые на отрезке своего существования от до принимают лишь значения, равные 1, дискретные сигналы Баркера и некоторые другие функции. Спектральный метод анализа сигналов основан на преобразованиях Фурье и состоит в замене сложной функции времени, описывающей сигнал, суммой простых гармонических сигналов, образующих частотный спектр этого сигнала. Знаменитый французский физик и математик Ж. Б. Фурье (1768 – 1830 г. г.) доказал, что любое изменение во времени некоторой функции можно аппроксимировать в виде конечной или бесконечной суммы ряда гармонических колебаний с разными амплитудами, частотами и начальными фазами. Этой функцией может быть ток или напряжение в электрической цепи.

Рассмотрим вначале представление периодического электрического сигнала (рис. 2.4), отвечающего условию

, (2.13)

где: — период сигнала; =1,2,3,….

Рис. 2.4. Периодический сигнал

Представим этот сигнал бесконечным тригонометрическим рядом:

Этот ряд называется рядом Фурье.

Возможна запись ряда Фурье в другом виде:

, (2.15)

Где: — модуль амплитуд гармоник;

— фазы гармоник;

— круговая частота;

— коэффициенты косинусоидальных составляющих; — коэффициенты синусоидальных составляющих; — среднее значение сигнала за период (постоянная составляющая).

Отдельные слагаемые рядов называют гармониками. Число является номером гармоники. Совокупность величин в ряде (2.15) называют спектром амплитуд, а совокупность величин — спектром фаз.

Ниже на рис. 2.5 представлены амплитудный и фазовый спектры периодического сигнала. Вертикальные отрезки амплитудного спектра представляют амплитуды гармоник и называются спектральными линиями.

Рис 2.5. Амплитудный и фазовый спектры периодического сигнала

Таким образом, спектр периодического сигналаЛинейчатый. Каждый периодический сигнал имеет вполне определенные амплитудный и фазовый спектры.

Сумма ряда (2.15) является бесконечной, но, начиная с некоторого номера, амплитуды гармоник настолько малы, что ими можно пренебречь и практически реальный периодический сигнал представляется функцией с ограниченным спектром. Интервал частот, соответствующий ограниченному спектру, называется шириной спектра.

Если функция , описывающая периодический сигнал, является четной, то сумма ряда (2.14) будет содержать только косинусоидальные составляющие. Если — нечетная функция, то сумма будет содержать только синусоидальные составляющие.

Возможно также представление периодического сигнала в виде комплексного ряда Фурье:

, (2.16)

— комплексные амплитуды спектра, содержащие информацию, как об амплитудном, так и о фазовом спектрах.

После подстановки значений и , получим:

(2.17)

Если подставить полученное значение в ряд (1.29), то он обращается в тождество. Таким образом, периодический электрический сигнал можно задавать либо функцией времени , либо комплексной амплитудой спектра.

2.2.1. Спектр периодической последовательности прямоугольных импульсов

Состав спектра периодической последовательности прямоугольных импульсов зависит от величины отношения периода последовательности к длительности импульса, называемого скважностью импульсов. В спектре будут отсутствовать гармоники с номерами кратными скважности импульсов. Скважность импульсов равна . На рис.1.17 приведены три импульсные последовательности с разными скважностями и соответствующие им спектры. Для периодической последовательности, скважность которой равна 2, в спектре отсутствуют 2, 4, 6 ,8 и т. д. гармоники. Для последовательности, скважность которой равна 3, в спектре отсутствуют 3, 6 и т. д. гармоники. Для последовательности, скважность которой равна 4, в спектре отсутствуют 4, 8 и т. д. гармоники. Во всех приведенных спектрах интервал между спектральными линиями равен величине обратной периоду последовательности. Точки на оси частот, в которых спектр равен нулю, соответствуют величине, обратной длительности импульсов периодических последовательностей.

Рис.2.6 .Периодические последовательности импульсов и их спектры.

2.2.2. Спектр непериодического сигнала

При рассмотрении спектра непериодического сигнала воспользуемся предельным переходом от периодического сигнала к непериодическому сигналу, устремив период к бесконечности.

Для периодического сигнала, представленного на рис. 2.4, ранее получено выражение (2.17) для комплексной амплитуды спектра:

(2.18)

Введем обозначение:

(2.19)

Построим модуль спектра :


Рис. 2.7. Модуль спектра периодического сигнала

Расстояние между спектральными линиями равно . Если увеличивать период , то будет уменьшаться интервал w1 . При интервал между спектральными линиями w1® dw. При этом периодическая последовательность импульсов превращается в одиночный импульс и модуль спектра стремится к непрерывной функции частоты . В результате предельного перехода от периодического сигнала к непериодическому линейчатый спектр вырождается в сплошной спектр, представленный на рис. 2.8.

Рис. 2.8. Спектр непериодического сигнала

При этом комплексная амплитуда равна:

. (2.20)

С учетом предельного перехода при

(2.21)

Подставим полученное выражение в ряд (2.16). При этом сумма трансформируется в интеграл, а значения дискретных частот в значение текущей частоты и непериодический сигнал можно представить в следующем виде:

. (2.22)

Это выражение соответствует обратному преобразованию Фурье. Огибающая сплошного спектра одиночного импульса совпадает с огибающей линейчатого спектра периодической функции, представляющей периодическое повторение этого импульса.

Интеграл Фурье позволяет любую непериодическую функцию представить в виде суммы бесконечного числа синусоидальных колебаний с бесконечно малыми амплитудами и бесконечно малым интервалом по частоте. Спектр сигнала определяется из выражения

Этот интеграл соответствует прямому преобразованию Фурье.

– комплексный спектр, в нём содержится информация, как о спектре амплитуд, так и о спектре фаз.

Таким образом, спектр непериодической функции сплошной. Можно сказать, что в нём содержатся «все» частоты. Если вырезать из сплошного спектра малый интервал частот , то частоты спектральных составляющих в этом участке будут отличаться сколь угодно мало. Поэтому спектральные составляющие можно складывать так, как будто все они имеют одну и ту же частоту и одинаковые комплексные амплитуды. Спектральная плотность есть отношение комплексной амплитуды малого интервала частот к величине этого интервала.

Спектральный анализ сигналов имеет фундаментальное значение в радиоэлектронике. Информация о спектре сигнала позволяет обоснованно выбирать полосу пропускания устройств, на которые воздействует этот сигнал.

2.2.3. Спектр одиночного прямоугольного видеоимпульса

Рассчитаем спектр одиночного прямоугольного импульса, амплитуда которого равна Е , а длительность — t, представленного на рис. 2.9.

Рис. 2.9. Одиночный прямоугольный импульс

В соответствии с выражением (2.24) спектр такого сигнала равен

=. (2.24)

Поскольку = 0 , когда , то частоты, на которых спектр обращается в нуль равны , где K =1,2,3…

На рис. 2.10 представлен комплексный спектр одиночного прямоугольного импульса длительностью .

Рис.2.10. Спектр одиночного прямоугольного импульса

Спектральная плотность определяет распределение энергии в спектре одиночного импульса. В общем случае распределение энергии неоднородно. Однородное распределение характерно для хаотического процесса, называемого «белым шумом».

Спектральная плотность импульса на нулевой частоте равна его площади. Приблизительно 90% энергии одиночного прямоугольного импульса сосредоточено в спектре, ширина которого определяется выражением

Соотношение (1.41) определяет требования к ширине полосы пропускания радиотехнического устройства. В задачах, где форма сигнала имеет второстепенное значение полосу пропускания устройства для этого сигнала можно выбрать равной ширине первого лепестка спектра. При этом неизвестна степень искажения формы сигнала. Двукратное увеличение полосы пропускания лишь на 5% увеличит энергию сигнала при одновременном возрастании уровня шумов.

Всякий периодический сигнал воздействия f(t) – может быть представлен бесконечной суммой синусоид кратных частот – рядом Фурье:

,
(12)

Периодическая функция времени обладает свойством повторения формы через минимальный промежуток времени T, называемый периодом функции:

.

Период определяет частоту основной гармоники бесконечной суммы, которой кратны все слагаемые:

.

Коэффициенты ряда (12) определяются по формулам Фурье:

(13)

Объединение синуса и косинуса одной частоты в выражение (12) дает другую форму ряда Фурье:

(14)

где
,
.

В теории цепей удобнее использовать комплексную форму ряда Фурье:

(15)

здесь комплексная амплитуда к-й гармоник

;

, (16)

где

С учетом выражений (14) и (15) можно получить выражение (17):

(17)

Вещественность
означает, что ряд состоит только из косинусных гармоник, а функция времени является четной.

Амплитудный спектр:

, (18)

число гармоник на интервале между двумя узлами равно отношению
, называемого скважностью импульсов.

На вход ARC - фильтра будем действовать периодическим сигналом прямоугольной формы, имеющего следующие характеристики:

Скважность: S = 3

Амплитуда, В: U = 8

Порядок Фурье: n = 4

Будем исследовать реакцию фильтр при воздействие на него сигнала частотой лежащей в полосе пропускания. Для этого выберем частоту сигнала воздействия
, где
- резонансная частота данного фильтра. Отсюда частота сигнала воздействия
Гц.

1.Суммирование функций и построение графика суммы.

Рассмотрим разложение в усеченный ряд Фурье периодической последовательности импульсов со скважностью s и числом слагаемых N:

Для построения графика суммы воспользуемся компьютерной программой MathCAD:

2.Амплитудный спектр воздействия.

3.Фазный спектр воздействия.

      . Рассчитаем амплитудный и фазный спектры реакции:

В пункте 1.3 были получены амплитудный и фазовый спектры сигнала воздействия. Определим, какова будет реакция исследуемого ARC – фильтра, если на его вход воздействовать периодическим сигналом (см. п.п. 1.3).

1. Амплитудный спектр реакции:

Рис. 6 График амплитудного спектра реакции.

Из графика видно, что при k=2 наблюдается максимальная пропускная способность фильтра. Это обусловлено тем, что   к где   частота основной гармоники.

2. Фазный спектр реакции:

Рис. 8 Фазный спектр реакции.

1.5. Построим график функции времени реакции цепи на заданное воздействие:

По амплитудному и фазному спектрам (см. п.п. 1.3) можно построить соответствующую им функцию времени по формулам (14).

Для построения графика функции времени воспользуемся компьютерной программой MathCAD:

Рис.9. График функции времени.

На Рис. 9 представлены графики сигналов воздействия () и реакции () ARC – фильтра.

1.6. Рассчитаем и построим графики амплитудного и фазного спектров воздействия и реакции, а также временные функции воздействия и реакции с периодом в два раза больше.

В п.п. 1.3. – 1.4 мы исследовали реакцию фильтра при воздействие на него периодическим сигналом, частотой
, где- резонансная частота данногоARC - фильтра. По условию данного пункта примем частоту сигнала воздействия
.

График суммы:

Рис. 10. График суммы.

Амплитудный спектр воздействия.

Рис. 4 Амплитудный спектр воздействия.

Амплитудный спектр реакции имеет следующий вид:

Рис. 11Амплитудный спектр реакции.

Фазный спектр воздействия.

Рис. 5 Фазный спектр воздействия.

Фазный спектр реакции имеет следующий вид:

Рис. 12 Фазный спектр реакции

Временные функции:

Рис.13 График функции времени.

) мы познакомились с понятием гармонической (синусоидальной ) функции. А бывают ли негармонические функции и сигналы и как с ними работать? В этом нам и предстоит сегодня разобраться 🙂

Гармонические и негармонические сигналы.

И для начала давайте чуть подробнее разберемся, как же классифицируются сигналы. В первую очередь нас интересуют гармонические сигналы, форма которых повторяется через определенный интервал времени , называемый периодом. Периодические сигналы в свою очередь делятся на два больших класса – гармонические и негармонические. Гармонический сигнал – это сигнал, который можно описать следующей функцией:

Здесь – амплитуда сигнала, – циклическая частота, а – начальная фаза. Вы спросите – а как же синус? Разве синусоидальный сигнал не является гармоническим? Конечно, является, дело в том, что , то есть сигналы отличаются начальной фазой, соответственно, синусоидальный сигнал не противоречит определению, которое мы дали для гармонических колебаний 🙂

Вторым подклассом периодических сигналов являются негармонические колебания . Вот пример негармонического сигнала:

Как видите, несмотря на “нестандартную” форму, сигнал остается периодическим, то есть его форма повторяется через интервал времени, равный периоду.

Для работы с такими сигналами и их исследования существует определенная методика, которая заключается в разложении сигнала в ряд Фурье . Суть методики состоит в том, что негармонический периодический сигнал (при выполнении определенных условий) можно представить в виде суммы гармонических колебаний с определенными амплитудами, частотами и начальными фазами. Важным нюансом является то, что все гармонические колебания, которые участвуют в суммировании, должны иметь частоты, кратные частоте исходного негармонического сигнала. Возможно это пока не совсем понятно, так что давайте рассмотрим практический пример и разберемся чуть подробнее 🙂 Для примера используем сигнал, который изображен на рисунке чуть выше. Его можно представить следующим образом:

Давайте изобразим все эти сигналы на одном графике:

Функции , называют гармониками сигнала, а ту из них, период которой равен периоду негармонического сигнала, называют первой или основной гармоникой . В данном случае первой гармоникой является функция (ее частота равна частоте исследуемого негармонического сигнала, соответственно, равны и их периоды). А функция представляет из себя ни что иное как вторую гармонику сигнала (ее частота в два раза больше). В общем случае, негармонический сигнал раскладывается на бесконечное число гармоник:

В этой формуле – амплитуда, а – начальная фаза k-ой гармоники. Как мы уже упомянули чуть ранее, частоты всех гармоник кратны частоте первой гармоники, собственно, это мы и видим в этой формуле 🙂 – это нулевая гармоника, ее частота равна 0, она равна среднему значению функции за период. Почему среднему? Смотрите – среднее значения функции синуса за период равно 0, а значит при усреднении в этой формуле все слагаемые, кроме будут равны 0.

Совокупность всех гармонических составляющих негармонического сигнала называют спектром этого сигнала. Различают фазовый и амплитудный спектр сигнала:

  • фазовый спектр сигнала – совокупность начальных фаз всех гармоник
  • амплитудный спектр сигнала – амплитуды всех гармоник, из которых складывается негармонический сигнал

Давайте рассмотрим амплитудный спектр поподробнее. Для визуального изображения спектра используют диаграммы, представляющие из себя набор вертикальных линий определенной длины (длина зависит от амплитуды сигналов). На горизонтальной оси диаграммы откладываются частоты гармоник:

По горизонтальной оси могут откладываться как частоты в Гц, так и просто номера гармоник, как в данном случае. А по вертикальной оси – амплитуды гармоник, тут все понятно:). Давайте построим амплитудный спектр сигнала для негармонического колебания, которое мы рассматривали в качестве примера в самом начале статьи. Напоминаю, что его разложение в ряд Фурье выглядит следующим образом:

У нас есть две гармоники, амплитуды которых равны, соответственно, 2 и 1.5. Поэтому на диаграмме две линии, длины которых соответствуют амплитудам гармонических колебаний.

Фазовый спектр сигнала строится аналогично, за той лишь разницей, что используются начальные фазы гармоник, а не амплитуды.

Итак, с построением и анализом амплитудного спектра сигнала мы разобрались, давайте перейдем к следующей теме сегодняшней статьи – к понятию амплитудно-частотной характеристики.

Амплитудно-частотная характеристика (АЧХ).

АЧХ является важнейшей характеристикой многих цепей и устройств – фильтров, усилителей звука и т. д. Даже простые наушники имеют свою собственную амплитудно-частотную характеристику. Что же она показывает?

АЧХ – это зависимость амплитуды выходного сигнала от частоты входного сигнала.

Как мы выяснили в первой части статьи, негармонический периодический сигнал можно разложить в ряд Фурье. Но нас сейчас интересует, в первую очередь, аудио-сигнал, и выглядит он следующим образом:

Как видите, ни о какой периодичности здесь не идет речи 🙂 Но, к счастью, существуют специальные алгоритмы, которые позволяют представить звуковой сигнал в виде спектра входящих в него частот. Мы сейчас не будем подробно разбирать эти алгоритмы, это тема для отдельной статьи, просто примем тот факт, что они позволяют нам осуществить такое преобразование с аудио-сигналом 🙂

Соответственно, мы можем построить диаграмму амплитудного спектра звукового сигнала. А пройдя через какую-либо цепь (к примеру, через наушники при воспроизведении звука) сигнал будет изменен. Так вот амплитудно-частотная характеристика как раз и показывает, какие изменения будет претерпевать входной сигнал при прохождении через ту или иную цепь. Давайте обсудим этот момент чуть поподробнее…

Итак, на входе мы имеем ряд гармоник. Амплитудная-частотная характеристика показывает, как изменится амплитуда той или иной гармоники при прохождении через цепь. Рассмотрим пример АЧХ:

Разберемся поэтапно, что же тут изображено… Начнем с осей графика АЧХ. По оси y мы откладываем величину выходного напряжения (или коэффициента усиления, как на данном рисунке). Коэффициент усиления мы откладываем в дБ, соответственно величина, равная 0 дБ, соответствует усилению в 1 раз, то есть амплитуда сигнала остается неизменной. По оси x откладываются частоты входного сигнала. Таким образом, в рассматриваемом случае для всех гармоник, частоты которых лежат в интервале от 100 до 10000 Гц, амплитуда не изменится. А сигналы всех остальных гармоник будут ослаблены.

На графике отдельно отмечены частоты и – их отличительной особенностью является то, что сигнал гармоник данных частот будет ослаблен в 1.41 раза (3 дБ) по напряжению, что соответствует уменьшению в 2 раза по мощности. Полосу частот между и называют полосой пропускания. Получается следующая ситуация – сигналы всех гармоник, частоты которых лежат в пределах полосы пропускания устройства/цепи будут ослаблены менее, чем в 2 раза по мощности.

Частотный диапазон аудиоустройств обычно разбивают на низкие, средние и высокие частоты. Приблизительно это выглядит так:

  • 20 Гц – 160 Гц – область низких частот
  • 160 Гц – 1.28 КГц – область средних частот
  • 1.28 КГц – 20.5 КГц – область высоких частот

Именно такую терминологию обычно можно встретить в разных программах-эквалайзерах, используемых для настройки звука. Теперь вы знаете, что красивые графики из таких программ являются именно амплитудно-частотными характеристиками, с которыми мы познакомились в сегодняшней статье 🙂

В завершении статьи посмотрим на пару АЧХ, полученных в программном эквалайзере:

Здесь мы можем видеть амплитудно-частотную характеристику усилителя. Причем усилены будут преимущественно средние частоты диапазона.

А здесь ситуация совсем другая – низкие и верхние частоты усиливаются, а в области средних частот для гармоник с частотой 500 Гц мы наблюдаем значительное ослабление.

А здесь усиливаются только низкие частоты. Аудиоаппаратура с такой АЧХ будет обладать высоким уровнем басов 🙂

На этом мы заканчиваем нашу сегодняшнюю статью, спасибо за внимание и ждем вас на нашем сайте снова!

2.1. Спектры периодических сигналов

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными . Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

негармонического сигнала

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

(2.1)

где k - номер гармоники; - угловая частота k - ой гармоники;

ω 1 = ω =2 π / T - угловая частота первой гармоники; - нулевая гармоника.

Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

Разложение в ряд Фурье периодических функций

Таблица 2

График f (t )

Ряд Фурье функции f (t )

Примечание

k=1,3,5,...

k=1,3,5,...

k=1,3,5,...

k=1,2,3,4,5

k=1,3,5,...

k=1,2,3,4,5

S=1,2,3,4,..

k=1,2,4,6,..

Сигналы 7 и 8 формируются из синусоиды посредством схем, использующих вентильные элементы.

Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы, называется спектром этого негармонического сигнала. Из этого набора гармоник выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических составляющих, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Аналогично рассматривают фазовые спектры как совокупность начальных фаз всех гармоник; их также изображают в масштабе в виде набора вертикальных линий.

Следует заметить, что начальные фазы в электротехнике принято измерять в пределах от –180 0 до +180 0 . Спектры, состоящие из отдельных линий, называют линейчатыми или дискретными . Спектральные линии находятся на расстоянии f друг от друга, где f - частотный интервал, равный частоте первой гармоники f .Таким образом, дискретные спектры периодических сигналов имеют спектральные составляющие с кратными частотами - f , 2f , 3f , 4f , 5f и т.д.

Пример 2.1. Найти амплитудный и фазовый спектр для сигнала прямоугольной формы, когда длительности положительного и отрицательного сигнала равны, а среднее значение функции за период равно нулю

u (t ) = Vпри0<t <T /2

u (t ) = -VприT /2<t <T

Для сигналов простыхчасто используемых форм решение целесообразно находить с помощью таблиц.

Рис. 2.2. Линейчатый амплитудный спектр прямоугольного сигнала

Из разложения в ряд Фурье сигнала прямоугольной формы (см. табл.2 - 1) следует, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоники. Амплитудный линейчатый спектр гармоник представлен на рис. 2.2. При построении принято, что амплитуда первой гармоники (здесь напряжения) равна одному вольту: B; тогда амплитуда третьей гармоники будет равна B, пятой - B и т.д. Начальные фазы всех гармоник сигнала равны нулю, следовательно, фазовый спектр имеет только нулевые значения ординат.

Задача решена.

Пример 2.2. Найти амплитудный и фазовый спектр для напряжения, изменяющегося по закону: при -T /4<t <T /4; u (t ) = 0 при T /4<t <3/4T . Такой сигнал формируется из синусоиды посредством исключения (схемным путем с использованием вентильных элементов) отрицательной части гармонического сигнала.


а)б)

Рис. 2.3. Линейчатый спектр сигнала однополупериодного выпрямления: а)амплитудный; б)фазовый

Для сигнала однополупериодного выпрямления синусоидального напряжения (см. табл.2 - 8) ряд Фурье содержит постоянную составляющую (нулевую гармонику), первую гармонику и далее набор только четных гармоник, амплитуды которых быстро убывают с ростом номера гармоники. Если, например, положить величину V = 100 B, то, умножив каждое слагаемое на общий множитель 2V/π , найдем (2.2)

Амплитудный и фазовый спектры этого сигнала изображены на рис.2.3а,б.

Задача решена.

В соответствии с теорией рядов Фурье точное равенство негармонического сигнала сумме гармоник имеет место только при бесконечно большом числе гармоник. Расчет гармонических составляющих на ЭВМ позволяет анализировать любое число гармоник, которое определяется целью расчета, точностью и формой негармонического воздействия. Если длительность сигнала t независимо от его формы много меньше периода T , то амплитуды гармоник будут убывать медленно, и для более полного описания сигнала приходится учитывать большое число членов ряда. Эту особенность можно проследить для сигналов, представленных в таблице 2 - 5 и 6, при выполнении условия τ <<T . Если негармонический сигнал по форме близок к синусоиде (например, сигналы 2 и 3 в табл.2), то гармоники убывают быстро, и для точного описания сигнала достаточно ограничиться тремя - пятью гармониками ряда.

Не так давно товарищ , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на